مروری بر پلیمرشدن و تولید پلیمرهای سبز در محیط کربن دی اکسید فوق بحرانی

نوع مقاله : مروری

نویسندگان

گروه مهندسی شیمی، دانشگاه کاشان، کاشان، ایران.

چکیده

در دهه های اخیر جهت گیری دانش ­های گوناگون، به سمت روش­ هایی با آلایندگی کم­تر، کاهش اثرهای محیط زیستی و کاهش دورریز است. در این راستا، تولید پلیمرها با کربن دی اکسید فوق بحرانی به شکل محیط واسطه (حلال و ضد حلال)، می تواند مشکل ­های یاد شده را برطرف کرده ، و جایگزینی مناسب برای حلال­های رایج باشد. در این مقاله، فرایندهای مختلف پلیمرشدن همگن، ناهمگن و پلیمرهایی تولیدشده در محیط کربن دی اکسید فوق بحرانی، مورد بحث قرار گرفته است. همچنین، پلیمرشدن امولسیونی آب و کربن دی اکسید فوق بحرانی برای کاربردهای پزشکی، و نیز پلیمرهای متخلخل مورد استفاده در رهایش دارو، بررسی شده است. در ادامه، به ­طور اجمالی تثبیت کننده ها و امولسیفایرهای مورد استفاده نیز طبقه بندی شده اند. مرور پژوهش ­های انجامشده، بیانگر رشد فزاینده و گسترش روز افزون به­کارگیری فناوری کربن دی اکسید فوق بحرانی، در فرایندهای سبز و توسعه پایداراست.

کلیدواژه‌ها

موضوعات


[1] Kamali, H., E. Khodaverdi, and F. Hadizadeh, Ring-opening polymerization of PLGA-PEG-PLGA triblock copolymer in supercritical carbon dioxide. The Journal of Supercritical Fluids, 2018. 137: p. 9-15.
[2] Kamali, H., et al., Ring-opening polymerization of poly (d, l-lactide-co-glycolide)-poly (ethylene glycol) diblock copolymer using supercritical CO2. The Journal of Supercritical Fluids, 2019. 145: p. 133-139.
[3] Scholsky, K.M., Polymerization reactions at high pressure and supercritical conditions. TheJournal of Supercritical Fluids, 1993. 6(2): p. 103-127.
[4] Yeo, S.-D. and E. Kiran, Formation of polymer particles with supercritical fluids: a review. The Journal of Supercritical Fluids, 2005. 34(3): p. 287-308.
[5] Sodeifian, G. and K. Ansari, Optimization of Ferulago Angulata oil extraction with supercritical carbon dioxide. The Journal of Supercritical Fluids, 2011. 57(1): p. 38-43.
[6] Sodeifian, G., N.S. Ardestani, and S.A. Sajadian, Extraction of seed oil from Diospyros lotus optimized using response surface methodology. Journal of Forestry Research: p. 1-11.
[8] Sodeifian, G., et al., Properties of Portulaca oleracea seed oil via supercritical fluid extraction: experimental and optimization. The Journal of Supercritical Fluids, 2018. 135: p. 34-44.
[10] Sodeifian, G., J. Azizi, and S. Ghoreishi, Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide. The Journal of Supercritical Fluids, 2014. 95: p. 1-7.
[11] Sodeifian, G., et al., Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling. The Journal of Supercritical Fluids, 2016. 110: p. 265-274
[12] Sodeifian, G. and S.A. Sajadian, Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide. The Journal of Supercritical Fluids, 2017. 121: p. 52-62.
[13] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: experimental and optimization. The Journal of Supercritical Fluids, 2016. 107: p. 137-144.
[14] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: process optimization and oil properties. The Journal of Supercritical Fluids, 2017. 119: p. 139-149.
[15] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Optimization of essential oil extraction from Launaea acanthodes Boiss: utilization of supercritical carbon dioxide and cosolvent. The Journal of Supercritical Fluids, 2016. 116: p. 46-56.
[17] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Evaluation of the response surface and hybrid artificial neural network-genetic algorithm methodologies to determine extraction yield of Ferulago angulata through supercritical fluid. Journal of the Taiwan Institute of Chemical Engineers, 2016. 60: p. 165-173.
[18] Sodeifian, G., S.A. Sajadian, and B. Honarvar, Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Natural product research, 2018. 32(7): p. 795-803.
[19] Sodeifian, G., S.A. Sajadian, and F. Razmimanesh, Solubility of an antiarrhythmic drug (amiodarone hydrochloride) in supercritical carbon dioxide: Experimental and modeling. Fluid Phase Equilibria, 2017. 450: p. 149-159.
[21] Sodeifian, G., S.A. Sajadian, and N.S. Ardestani, Determination of solubility of Aprepitant (an antiemetic drug for chemotherapy) in supercritical carbon dioxide: Empirical and thermodynamic models. The Journal of Supercritical Fluids, 2017. 128: p. 102-111.
[22] Wang, R. and H.M. Cheung, Ultrasound assisted polymerization of MMA and styrene in near critical CO2. The Journal of supercritical fluids, 2005. 33(3): p. 269-274.
[23] Boyère, C., C. Jérôme, and A. Debuigne, Input of supercritical carbon dioxide to polymer synthesis: An overview. European Polymer Journal, 2014. 61: p. 45-63.
[24] Kiran, E., Supercritical fluids and polymers–The year in review–2014. The Journal of Supercritical Fluids, 2016. 110: p. 126-153.
[25] Kemmere, M.F. and T. Meyer, Supercritical carbon dioxide: in polymer reaction engineering. 2006: John Wiley & Sons.
[27] گودرزنیا, ا. and ع. سعیدی, بازیافت روغن موتور کارکرده به روش استخراج فوق بحرانی با کربن دی اکسید. نشریه شیمی و مهندسی شیمی ایران, 2012. (3)31:صفحات 44-39 .
[30] Sodeifian, G., F. Razmimanesh, and S.A. Sajadian, Solubility measurement of a chemotherapeutic agent (Imatinib mesylate) in supercritical carbon dioxide: Assessment of new empirical model. The Journal of Supercritical Fluids, 2019.
[36] Reverchon, E., et al., Supercritical fluids processing of polymers for pharmaceutical and medical applications. The Journal of Supercritical Fluids, 2009. 47(3): p. 48492-4
[37] Goñi, M.L., et al., Eugenol-loaded LLDPE films with antioxidant activity by supercritical carbon dioxide impregnation. The Journal of Supercritical Fluids, 2016. 111: p. 28-35.
[38] Brunner, G., Supercritical fluids: technology and application to food processing. Journal of food engineering, 2005. 67(1-2): p. 21-33.
[39] Sakakura, T., J.-C. Choi, and H. Yasuda, Transformation of carbon dioxide. Chemical Reviews, 2007. 107(6): p. 2365-2387.
[40] Rayner, C.M., The potential of carbon dioxide in synthetic organic chemistry. Organic Process Research & Development, 2007. 11(1): p. 121-132.
[41] Said-Galiyev, E., I. Pototskaya, and Y.S. Vygodskii, Supercritical carbon dioxide and polymers. Polymer Science, Series C: Reviews, 2004. 46(1): p. 1-13.
[42] DeSimone, J., Z. Guan, and C. Elsbernd, Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992. 257(5072): p. 945-947.
[43] Bonavoglia, B., et al., Sorption and swelling of semicrystalline polymers in supercritical CO2. Journal of PolymerScience Part B: Polymer Physics, 2006. 44(11): p. 1531-1546.
[44] Kazarian, S., Polymer processing with supercritical fluids. Polymer science series CC/C of vysokomolekuliarnye soedineniia, 2000. 42(1): p. 78-101.
[45] Walker, T.A., D.J. Frankowski, and R.J. Spontak, Thermodynamics and kinetic processes of polymer blends and block copolymers in the presence of pressurized carbon dioxide. Advanced Materials, 2008. 20(5): p. 879-898.
[47] Su, W.-F., Principles of Polymer Design and Synthesis. 2013, Springer Berlin Heidelberg.
[48] Kendall, J.L., et al., Polymerizations in supercritical carbon dioxide. Chemical reviews, 1999. 99(2): p. 543-564.
[49] Available from: www.wikipedia.com.
[50] Ihata, O., Y. Kayaki, and T. Ikariya, Synthesis of Thermoresponsive Polyurethane from 2‐Methylaziridine and Supercritical Carbon Dioxide. Angewandte Chemie, 2004. 116(6): p. 735-737.
[52] Matyjaszewski, K. and T.P. Davis, Handbook of radical polymerization. 2003: John Wiley & Sons.
[53] Matyjaszewski, K. and J. Spanswick, Controlled/living radical polymerization. Materials Today, 2005. 8(3): p. 26-33.
[54] Polloni, A.E., et al., Enzymatic ring opening polymerization of ω-pentadecalactone using supercritical carbon dioxide. The Journal of Supercritical Fluids, 2017. 119: p. 221-228.
[55] Guindani, C., et al., Enzymatic ring opening copolymerization of globalide and ε-caprolactone under supercritical conditions. The Journal of Supercritical Fluids, 2017. 128: p. 404-411.
[56] Du, L., et al., Fluoropolymer synthesis in supercritical carbon dioxide. The Journal of Supercritical Fluids, 2009. 47(3): p. 447-457.
[57] Kwon, S., et al., Synthesis of a biocompatible polymer using siloxane-based surfactants in supercritical carbon dioxide. The Journal of Supercritical Fluids, 2008. 45(3): p. 391-399.
[60] Inoue, S., H. Koinuma, and T. Tsuruta, Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part B: Polymer Letters, 1969. 7(4): p. 287-292.
[61] DeSimone, J., et al., Dispersion polymerizations in supercritical carbon dioxide. Science, 1994. 265(5170): p. 356-359.
[64] Costa, L.I., et al., The rate of polymerization in two loci reaction systems: VDF‐HFP precipitation copolymerization in supercritical carbon dioxide. Polymer Engineering & Science, 2011. 51(10): p. 2093-2102.
[65] Birkin, N.A., et al., Synthesis and application of new CO 2-soluble vinyl pivalate hydrocarbon stabilisers via RAFT polymerisation. Polymer Chemistry, 2011. 2(6): p. 1293-1299.
[66] Ye, W. and J.M. DeSimone, Emulsion polymerization of N-ethylacrylamide in supercritical carbon dioxide. Macromolecules, 2005. 38(6): p. 2180-2190
[67] Ye, W. and J.M. DeSimone, Synthesis of sugar-containing amphiphiles for liquid and supercritical carbon dioxide. Industrial & engineering chemistry research, 2000. 39(12): p. 4564-4566.
[68] Ye, W., S. Wells, and J.M. DeSimone, Well‐defined glycopolymer amphiphiles for liquid and supercritical carbon dioxide applications. Journal of Polymer Science Part A: Polymer Chemistry, 2001. 39(21): p. 3841-3849.
[69] Bratton, D., M. Brown, and S.M. Howdle, Suspension polymerization of L-lactide in supercritical carbon dioxide in the presence of a triblock copolymer stabilizer. Macromolecules, 2003. 36(16): p. 5908-5911.
[70] Bratton, D., M. Brown, and S.M. Howdle, Synthesis of poly (glycolide) in supercritical carbon dioxide in the presence of a hydrocarbon stabiliser. Chemical Communications, 2004(7): p. 808-809
[71] Hussain, Y.A., T. Liu, and G.W. Roberts, Synthesis of cross-linked, partially neutralized poly (acrylic acid) by suspension polymerization in supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2012. 51(35): p. 11401-11408.
[72] Wang, T., et al., Suspension Polymerization of Poly (l-lactide-co-p-dioxanone) in Supercritical Carbon Dioxide. Journal of Polymers and the Environment, 2012. 20(1): p. 157-163.
[73] Lee, C.T., et al., Water-in-carbon dioxide emulsions: formation and stability. Langmuir, 1999. 15(20): p. 6781-6791.
[74] Available from: www.X-MOL.com.
[75] Clarke, M.J., et al., Water in supercritical carbon dioxide microemulsions: spectroscopic investigation of a new environment for aqueous inorganic chemistry. Journal of the American Chemical Society, 1997. 119(27): p. 6399-6406.
[76] Jacobson, G.B., C.T. Lee, and K.P. Johnston, Organic synthesis in water/carbon dioxide microemulsions. The Journal of Organic Chemistry, 1999. 64(4): p. 1201-1206.
[77] Holmes, J., et al., Bioconversions in a water-in-CO2 microemulsion. Langmuir, 1998. 14(22): p. 6371-6376.
[78] Aymonier, C., et al., Review of supercritical fluids in inorganic materials science. The Journal of Supercritical Fluids, 2006. 38(2): p. 242-251.
[79]Tsivintzelis, I., E. Pavlidou, and C. Panayiotou, Biodegradable polymer foams prepared with supercritical CO2–ethanol mixtures as blowing agents. The Journal of Supercritical Fluids, 2007. 42(2): p. 265-272.
[80]Tan, B. and A.I. Cooper, Functional oligo (vinyl acetate) CO2-philes for solubilization and emulsification. Journal of the American Chemical Society, 2005. 127(25): p. 8938-8939.
[83] Wang, J., et al., Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. Journal of Materials Chemistry, 2006. 16(18): p. 1751-1756.
[85] بختیاری دوست, ا.و همکاران  ساخت سیلیکاژل دانسیته پایین با استفاده از مایع‌های فوق بحرانی. نشریه شیمی و مهندسی شیمی ایران, 2013. (4)32: صفحات 16-1.
[86] Lee, J.-Y., B. Tan, and A.I. Cooper, CO2-in-water emulsion-templated poly (vinyl alcohol) hydrogels using poly (vinyl acetate)-based surfactants. Macromolecules, 2007. 40(6): p. 1955-1961
[87]  Available from: http:edu.nano.ir.
[88] Adkins, S.S., et al., Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants. Langmuir, 2010. 26(8): p. 5335-5348.
[89] Harrison, K., et al., Water-in-carbon dioxide microemulsions with a fluorocarbon-hydrocarbon hybrid surfactant. Langmuir, 1994. 10(10): p. 3536-3541.
[90] Eastoe, J., et al., Fluoro-surfactants at air/water and water/CO2 interfaces. Physical Chemistry Chemical Physics, 2000. 2(22): p. 5235-5242.
[92] Loeker, F., P.C. Marr, and S.M. Howdle, FTIR analysis of water in supercritical carbon dioxide microemulsions using monofunctional perfluoropolyether surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 214(1-3): p. 143-150.
[93] Woods, H.M., et al., Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. Journal of Materials Chemistry, 2004. 14(11): p. 1663-1678.
[94] Adamsky, F. and E. Beckman, Inverse emulsion polymerization of acrylamide in supercritical carbon dioxide. Macromolecules, 1994. 27(1): p. 312-314.
[95] Ye, W.-j., J.S. Keiper, and J.M. DeSimone, Polymeric nanoparticles from supercritical CO2 microemulsion polymerization. Chinese journal of polymer science, 2006. 24(01): p. 95-101.
[96] da Rocha, S.R., et al., Stubby surfactants for stabilization of water and CO2 emulsions: Trisiloxanes. Langmuir, 2003. 19(8): p. 3114-3120.
[97] Hollamby, M.J., et al., Tri‐Chain Hydrocarbon Surfactants as Designed Micellar Modifiers for Supercritical CO2. Angewandte Chemie International Edition, 2009. 48(27): p. 4993-4995
[98] Da Rocha, S.R., K.L. Harrison, and K.P. Johnston, Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide. Langmuir, 1999. 15(2): p. 419-428.
[99] Swami, A., et al., Langmuir–Blodgett films of laurylamine-modified hydrophobic gold nanoparticles organized at the air–water interface. Journal of colloid and interface science, 2003. 260(2): p. 367-373.
[100] Dinsmore, A., et al., Colloidosomes: selectively permeable capsules composed of colloidal particles. Science, 2002. 298(5595): p. 1006-1009.
[101] Worthen, A.J., et al., Carbon dioxide‐in‐water foams stabilized with nanoparticles and surfactant acting in synergy. AIChE Journal, 2013. 59(9): p. 3490-3501
[102] Li, J., A.P. Hitchcock, and H.D. Stöver, Pickering emulsion templated interfacial atom transfer radical polymerization for microencapsulation. Langmuir, 2010. 26(23): p. 17926-17935.
[104] Available from: www.semanticscholar.org.
[105] Klostermann, M., et al., Microstructure of supercritical CO 2-in-water microemulsions: a systematic contrast variation study. Physical Chemistry Chemical Physics, 2011. 13(45): p. 20289-20301.
[106] Butler, R., I. Hopkinson, and A. Cooper, Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the american chemical society, 2003. 125(47): p. 14473-14481.
[109] Tang, J., et al., Enhanced CO2 absorption of poly (ionic liquid) s. Macromolecules, 2005. 38(6): p. 2037-2039.
[110] Wilke, A., et al., Enhanced carbon dioxide adsorption by a mesoporous poly (ionic liquid). ACS Macro Letters, 2012,1(8).: p. 1028-1031.
[113] Takamoto, T., H. Uyama, and S. Kobayashi, Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-Polymers, 2001. 1(1)
[114] Bergeot, V., et al., Anionic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide: parameters influencing the reactivity. The Journal of supercritical fluids, 2004. 28(2-3): p. 249-261.
[115] Shiho, H. and J.M. DeSimone, Dispersion polymerization of 2‐hydroxyethyl methacrylate in supercritical carbon dioxide. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(20): p. 3783-3790.
[116] Beuermann, S. and M. Imran‐Ul‐Haq. Homogeneous phase polymerization of vinylidene fluoride in supercritical CO2: Surfactant free synthesis and kinetics. in Macromolecular symposia. 2007,Wiley Online Library.
[118] Fukui K, K.T., Yokota H, Toriuchi Y, Kuniyoshi, K., US Patent 3522228A, 1970.
[119] French Patent :FR1524533, 1968
[120] PCT Patent:WO1996037535A1, 1995.
[121] Reverchon, E., S. Cardea, and C. Rapuano, Formation of poly‐vinyl‐alcohol structures by supercritical CO2. Journal of applied polymer science, 2007. 104(5): p. 3151-3160.