CFD Simulation of the Solvent Extraction Settler and Investigation on the Picket Fences and the Flow Distribution Blades

Document Type : Research Article

Authors

1 Mechanical Engineering Department, University of Hormozgan, Bandar Abbas, I.R. IRAN

2 Iranian Babak Copper Company, Shahrbabak, I.R. IRAN

Abstract

In this study, a three-dimensional simulation model has been carried out to investigate the flow pattern and the effect of picket fences on the performance of the settler in the solvent extraction plant in the Miduk copper complex. The effect of picket fences on the settler and their arrangements, flow distribution blades, separation of phases and the droplet size distribution has been investigated with CFD simulations.  The simulation has been carried out with an Eulerian-Eulerian method in conjunction with the incorporated MUSIG model which is based on a population balance equation and takes into account the break up and coalescence models of droplets.  The simulation of settler shows that feed spouting velocity was propagated for long distances in the settler and dispersion band continues to the end of the settler. By setting one picket fence in the settler, velocity vectors transmitted and the width of dispersion band decreased which as a result increasing droplet size. By increasing number of picket fences dispersion band almost disappears. The inspection of distribution of droplet size at different points in the settler showed that the presence of picket fences increases the size of droplets. Finally, the effect of closed to opened (C/O) area ratio of the picket fences on the performance of the settler was studied. The results showed that by increasing the C/O ratio, some circulation appears in the flow which causes a negative effect on phase separation.

Keywords

Main Subjects


[1] Mousavi S.M., Vossoughi M., Yaghmaei S., Jafari A., Copper Recovery from Chalcopyrite Concentrate by an Indigenous Acidithiobacillus Ferrooxidans in an Air-Lift Bioreactor. Iranian Journal of Chemistry and Chemical Engineering(IJCCE), 25(3): 21-26 (2006).
[2] Guerdouh A., Barkat D., Influence of the Solvent on the Extraction of Copper (II) from Nitrate Medium Using Salicylideneaniline. Journal of Dispersion Science and Technology, 38(7): 930-934 (2017).
[3] Smellie I.A., Forgan R.S., Brodie C., Gavine J.S., Harris L., Houston D., Hoyland, A.D., McCaughan, R.P., Miller, A.J., Wilson, L., Woodhall, F.M., Solvent Extraction of Copper: An Extractive Metallurgy Exercise for Undergraduate Teaching Laboratories. Journal of Chemical Education, 93(2): 362-367 (2015).
[4] Panda S.K., Singh K., Shenoy K., Buwa V.V., Numerical Simulations of Liquid-Liquid Flow in a Continuous Gravity Settler Using OpenFOAM and Experimental Verification. Chemical engineering journal, 310: 120-133 (2017).
[5] Gigas B., Giralico M., editors., Advanced Methods for Designing Today’s Optimum Solvent Extraction Mixer Settler Unit. Proceedings International Solvent Extraction Conference, eds KC Sole, PM Cole, JS Preston, and DJ Robinson; (2002).
[6] Lane G.L., Mohanarangam K., Yang W., Robinson D.J., Barnard K.R., Flow Pattern Assessment and Design Optimisation for an Industrial Solvent Extraction Settler Through in Situ Measurements and CFD Modelling. Chemical Engineering Research and Design,109: 200-214 (2016).
[7] Mirzaie M., Sarrafi A., Hashemipour H., Baghaie A., Molaeinasab M., CFD Simulation and Experimental Investigation of the Copper Solvent Extraction in a Pilot Plant Pulsed Packed Column in Sarcheshmeh Copper Complex. Heat and Mass Transfer, 53(6):1995-2008 (2017).
[8] Mirzaie M., Sarrafi A., Pour H.H., Baghaie A., Molaeinasab M., Experimental Investigation and CFD Modeling of Hydrodynamic Parameters in a Pulsed Packed Column. Solvent Extraction and Ion Exchange, 34(7): 643-660 (2016).
[9] Sadeghi R., Mohebbi A., Sarrafi A., Soltani A., Salmanzadeh M., Daneshpojooh S., CFD Simulation and Optimization of the Settler of an Industrial Copper Solvent Extraction Plant: A Case Study, Hydrometallurgy, 106(3): 148-158 (2011).
[10] منصوریان د.، کشاورز علمداری ا.، شبیه سازی دینامیک محاسباتی سیال در محفظه ی جداکننده ی فرآیند استخراج حلالی مس، نشریه مهندسی متالورژی، 20(2): 90 تا 97 (1396).
[11] Thaker A.H., Darekar M., Singh K.K., Buwa V.V., Experimental Investigations of liquid–liquid Disengagement in a Continuous Gravity Settler. Chemical Engineering Research and Design, 139: 174-187 (2018).
[12] Sreenivasulu B., Suresh A., Rao C., Sivaraman NJJoR., Chemistry N., Mixer-Settler Runs with Tri-Iso-Amyl Phosphate and Tri-N-Butyl Phosphate for the Aqueous Reprocessing of U–Zr Alloy, fuels, 330(3): 1207-1220 (2021).
[13] Kostanyan A.E., Erastov A.A., Industrial Countercurrent Chromatography Separations Based on a Cascade of Centrifugal Mixer-Settler Extractors. Journal of Chromatography A, 1572: 206-212 (2018).
[14] Ting Y., Hui H., Zhan-yuan L., Lan Z., Zheng L., HAO-gui, Z.H.A.O., Guo-an, Y.E., Transient Behavior and Mathematical Model of Solvent Extraction Process in Mixer-Settler, 42(4): 214 (2020).
[15] زارعی ط.، فارسیانی م.، عابدینی ا.، بررسی آزمایشگاهی و ارائه رابطه­ های تجربی برای سینی دریچه‌ای در مقیاس صنعتی در حد بالا و پایین عملیاتی، نشریه شیمی و مهندسی شیمی ایران، 36(3): 199 تا 209 (1396).
[16] رحیمی م.، مطالعه اختلاط فازها در سینی غربالی با استفاده از دینامیک سیالات محاسباتی. نشریه شیمی و مهندسی شیمی ایران، 31(1): 101 تا 113 (1391).
[17] Luo H., Svendsen HF., Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions. AIChE Journal, 42(5): 1225-1233 (1996).
[18] Prince M.J., Blanch H.W., Bubble Coalescence and Break‐Up in Air‐Sparged Bubble Columns. AIChE journal, 36(10): 1485-1499 (1990).
[19] Behzadi A., Issa R., Rusche H., Modelling of Dispersed Bubble and Droplet Flow at High Phase Fractions. Chemical Engineering Science, 59(4): 759-770 (2004).
[20] Magiera R., Blass E.. Separation of Liquid-Liquid Dispersion by Flow Through Fibre Beds. Filtration & separation, 34(4): 369-376 (1997).