بررسی عملکرد کاتالیست 2/ZrO5O2V برای اکسایش انتخابی ارتوزایلن به انیدرید فتالیک

نوع مقاله: علمی-پژوهشی

نویسندگان

تهران، دانشگاه علم و صنعت ایران، دانشکده مهندسی شیمی

چکیده

در این پژوهش به عملکرد کاتالیست وانادیم پنتا اکسید بر پایه زیرکونیا و تیتانیا در واکنش تولید انیدرید فتالیک به روش اکسایش انتخابی با ارتوزایلن پرداخته شده است. بدین منظور 3 نمونه کاتالیست بر روی پایه زیرکونیا با مقدار فاز فعال 4، 7 و 10 درصد وزنی و یک نمونه بر روی پایه تیتانیا با مقدار فاز فعال 7 درصد به روش تلقیح تر ساخته شدند. برای تعیین ویژگی‌ های نمونه‌ ها، آزمایش های BET، XRD، SEM و آزمون راکتوری در یک راکتور بستر ثابت در دو بازه‌ ی دمایی پایین (°C 410 ـ 310) و بالا (°C 550 ـ 450) و دو سرعت فضایی 1000و 1-h2000 انجام شد. کاتالیست بر پایه زیرکونیا با مقدار فاز فعال 7 درصد بیش‌ ترین گزینش پذیری نسبت به انیدرید فتالیک را نشان داد. مقایسه بین دو پایه نشان می‌دهد که نمونه بر پایه تیتانیا در بازه‌ ی دمایی پایین (°C 410 ـ 310) و پایه زیرکونیا در بازه‌ ی دمایی بالا (°C 550 ـ 450) بیش ‌ترین گزینش پذیری نسبت به انیدرید فتالیک را دارند. بررسی پایداری حرارتی نشان داد که کاتالیست بر پایه زیرکونیا پایداری بالایی را در این واکنش
در مقایسه با تیتانیا از خود نشان می‌دهد
.

کلیدواژه‌ها

موضوعات


[1] Wegener S.L., Marks T.J., Stair P.C., Design Strategies for the Molecular Level Synthesis of Supported Catalysts, Accounts of Chemical Research, 45 (2): 206-214 (2012).

[2] Akbari A., Alavi S.M., The Effect of Cesium and Antimony Promoters on the Performance of Ti-Phosphate-Supported Vanadium(V) Oxide Catalysts in Selective Oxidation of o-xylene to Phthalic Anhydride, Chemical Engineering Research and Design, 102: 286-296 (2015).

[3] Gu Y., Han F., Cang H., Xu Q., Synthesis and Research of CeO2-V2O5/ATP for Selective Catalytic Reduction of NOx in Flue Gas at Low Temperature, Procedia Environmental Sciences, 18(0): 412-417 (2013).

[4] Meng Y. Wang T., Chen S., Zhao Y., Ma X., Gong J., Selective Oxidation of Methanol to Dimethoxymethane on V2O5–MoO3/γ-Al2O3 Catalysts, Applied Catalysis B: Environmental, 160-161: 161-172 (2014).

[5] Brazdil J.F., Toft M.A., Ammoxidation. Encyclopedia of Catalysis, John Wiley & Sons, Inc (2002).

[6] Li X., Ye S., Zhao J., Li L., Peng L., Ding W., Selective Oxidation of Toluene Using Surface-Modified Vanadium Oxide Nanobelts, Chinese Journal of Catalysis, 34: 1297-1302 (2013).

[7] Guo H., Chen C., Xiao Y., Wang J., Fan Z., Li D., Sun Y., Influence of Preparation Method on the Surface and Catalytic Properties of Sulfated Vanadia–Titania Catalysts for Partial Oxidation of Methanol, Fuel Processing Technology, 106(0): 77-83 (2013).

[8] Kong L., Li J., Liu Q., Zhao Z., Sun Q., Liu J.,Wei Y., Promoted Catalytic Performances of Highly Dispersed V-Doped SBA-16 Catalysts for Oxidative Dehydrogenation of Ethane to Ethylene, Journal of Energy Chemistry, in press (2016).

[9] Acácio Mendes , Ana Rita Seita , Design of Phthalic Anhydride Production Process, Student Contest Problem Competition (2009) – EURECHA.

[10] Aysha Jassem Housani , Maha Othman Al Shehhi , Hessa Mohammed Al Shehhi , Production of Phthalic Anhydride from o-Xylene, College of Engineering UAE University GP & IT Unit , (2010).

[11] Lange, T., Heinrich S., Liebner C., Hieronymus H., Klemm E., Reaction Engineering Investigations of the Heterogeneously Catalyzed Partial Oxidation of o-Xylene in the Explosion Regime Using a Microfixed Bed Reactor, Chemical Engineering Science, 69: 440-448 (2012).

[12] Marx R., Jörg Wölk H., Mestl G., Turek T., Reaction Scheme of o-xylene Oxidation on Vanadia Catalyst, Applied Catalysis A: General, 398 (1–2), P.37-43 (2011).

[13] Mongkhonsi. T., Kershenbaum. L, The Effect of Deactivation of a V2O5/TiO2 (anatase) Industrial Catalyst on Reactor Behaviour During the Partial Oxidation of o-Xylene to Phthalic Anhydride, Applied Catalysis A: General, 170 (1), P.33-48 (1998).

[14] Schimmoeller B., Schulz H., Pratsinis S., Bareiss A., Reitzmann A., Czarnetzki B., Ceramic Foams Directly-Coated with Flame-Made V2O5/TiO2 for Synthesis of Phthalic Anhydride, Journal of Catalysis, 243(1): 82-92 (2006).

[15] Mahendiran C., Maiyalagan T., Vijayan P., Suresh C., Shanthi K., V-Mn-MCM-41 Catalyst for the Vapor Phase Oxidation of o-Xylene, Reaction Kinetics, Mechanisms and Catalysis, 105(2): 469-481 (2012).

[16] Selvaraj, M. and T. G. Lee, A Novel Route to Produce Phthalic Anhydride by Oxidation of o-xylene with Air over Mesoporous V-Mo-MCM-41 Molecular Sieves, Microporous and Mesoporous Materials, 85(1–2): 39-51 (2005).

[17] Ma, Z., Wu X., Feng Y., Si Z., Weng D., Shi L., Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5–WO3/TiO2 catalyst, Progress in Natural Science: Materials International, 25(4): 342-352 (2015).

[18] Dias C.R., Portela M.F., Bond G.C., Deactivation of V2O5/TiO2 Catalysts in the Oxidation of o-Xylene to Phthalic Anhydride, Studies in Surface Science and Catalysis, 88: 475-482 (1994).

[19] Dias C. R., Portela M.F., Bañares. M.A., Fereres M., Granados M., Peña M.A., Fierro G.L., Selective Oxidation of o-xylene over Ternary V-Ti-Si Catalysts, Applied Catalysis A: General, 224(1–2): 141-151 (2002).

[20] Rao K., Venkataswamy P., Bharali P., Phil H., Reddy B., Monolayer V2O5/TiO2–ZrO2 Catalysts for Selective Oxidation of o-Xylene: Preparation and Characterization, Research on Chemical Intermediates, 38(3-5): 733-744 (2012).

[21] Makedonski L., V2O5-ZrO2 Catalyst for Selective Oxidation of o-Xylene to Phthalic Anhydride: II. Physicochemical Characterisation of the Catalyst, Bulgarian Chemical Communications, 41:313-322(2009).

[22] Pieck, C.L., Bañares M.A., Vicente M.A., Fierro J.L.G., Chemical Structures of ZrO2-Supported V−Sb Oxides, Chemistry of Materials, 13(4): 1174-1180 (2001).

[23] Choi, S., Lee M., Wha Park D., Photocatalytic performance of TiO2/V2O5 Nanocomposite Powder Prepared by DC Arc Plasma, Current Applied Physics, 14(3): 433-438 (2014).

[24] Zhang, G. Q., Zhang X., Lin T., Gong T., Qi M., Synergetic Effect of FeVO4 and α-Fe2O3 in Fe–V–O Catalysts for Liquid Phase Oxidation of Toluene to Benzaldehyde, Chinese Chemical Letters, 23(2): 145-148 (2012).

[25] Kaichev V.V., Chesalov Y.A., Saraev A., Klyushin A., Knop-Gericke A., Andrushkevich T., Bukhtiyarov V., Redox Mechanism for Selective Oxidation of Ethanol over Monolayer V2O5/TiO2 Catalysts, Journal of Catalysis, 338(2): 82-93 (2016).

[27] Chekantsev, N. V., Gyngazova M., Ivanchina E., Mathematical Modeling of Light Naphtha (C5, C6) Isomerization Process, Chemical Engineering Journal, 238(3–4): 120-128 (2014).

[28] Fattahi M., Kazemeini M., Khorasheh F., Rashidi A., An investigation of the Oxidative Dehydrogenation of Propane Kinetics over a Vanadium–Graphene Catalyst Aiming at Minimizing of the COx Species, Chemical Engineering Journal, 250: 14-24 (2014).

[29] Hargreaves J.S.J., Heterogeneous Catalysis with Metal Nitrides, Coordination Chemistry Reviews, 257(13–14): 2015-2031 (2013).

[30] Song, J. H., Ju Han S., Yoo J., Park S., Kim D., Song I., Effect of Sr Content on Hydrogen Production by Steam Reforming of Ethanol over Ni-Sr/Al2O3-ZrO2 Xerogel Catalysts, Journal of Molecular Catalysis A: Chemical, 418-419: 68-77 (2016).

[31] Han, Y., Sun J., Fu H., Qu Y., Wan H., Xu Z., Zheng S., Highly Selective Hydrodechlorination of 1,2-Dichloroethane to Ethylene over Ag-Pd/ZrO2 Catalysts with Trace Pd, Applied Catalysis A: General, 519: 1-6 (2016).

[32] Wang, S., Li C., Xiao Z., Chen T., Wang G., Highly Efficient and Stable PbO–ZrO2 Catalyst for the Disproportionation of Methyl Phenyl Carbonate to Synthesize Diphenyl Carbonate, Journal of Molecular Catalysis A: Chemical, 420:26-33 (2016).

[33] Dobrosz-Gómez I., Gómez-García M., Bojarska J., Kozanecki M., Rynkowski J., Combustion Synthesis and Properties of Nanocrystalline Zirconium Oxide, Comptes Rendus Chimie, 18(10): 1094-1105 (2015).

[34] Rasmussen, S.B., Hansen J., Villarroel M., Llambias F.J., Fehrmann R., ávila P., Multidisciplinary Determination of the Phase Distribution for VOX–ZrO2–SO42−–Sepiolite Catalysts for NH3-SCR, Catalysis Today, 172(1): 73-77 (2011).

[35] Pieck C.L., del Val S., López Granados M., Bañares M.A., Fierro L.G., Bulk and Surface Structures of V2O5/ZrO2 Systems and Their Relevance for o-Xylene Oxidation, Langmuir, 18(7): 2642-2648 (2002).

[36] Pieck C.L., Del Val S., López Granados M., Bañares M.A., Fierro L.G., Oxidation of o-Xylene to Phthalic Anhydride on Sb-V/ZrO2 Catalysts, Catalysis Letters, 89(1-2): 27-34 (2003).

[37] جورشعبانی، میلاد؛ بدیعی، علیرضا؛ لشگری، نگار؛ محمدی زیارانی، قدسی؛ تهیه و شناسایی نانومتخلخل 

 V-SBA-16و کاربرد آن به عنوان کاتالیست در فرایند اکسایش مستقیم بنزن به فنل، نشریهشیمیومهندسیشیمیایران، 13 تا 20: (3)34 (1394).

[38] فیروزی، محمد؛ بقالها، مرتضی؛ اسدی، موسی؛ سنتز زئولیت ZSM-5 به عنوان کاتالیست فرایند تبدیل متانول به پروپیلن، نشریهشیمیومهندسیشیمیایران، (2)31: 21 تا 26 (1391).

[39] فروغ، ممیز؛ توفیقی­داریان، جعفر؛ علیزاده، علی محمد؛ اثر بارگذاری فلزهای سریم و زیرکونیم بر پایه HZSM-5 برای تولید الفین ­ای سبک از نفتا، نشریهشیمیومهندسیشیمیایران، (1)33: 37 تا 47 (1393).

[40] احمدپور، سجاد؛ عالمی، عبدالعلی؛ خادمی­نیا، شاهین؛ تهیه و شناسایی بلورهای کادمیم اکسید ناخالص شده با عناصر لانتانیدی گادولینیوم (Gd3+) و لوتتیوم (Lu3+) به روش سل ـ ژل، نشریهشیمیومهندسیشیمیایران، (1)33 : 1 تا 8 (1393).

[41] پرنیان، محمدجواد؛ مرتضوی، یدالله؛ طاهری نجف آبادی، علی؛ خدادادی، عباسعلی؛ استفاده از روش ترسیب شیمیایی فاز بخار برای لایه نشانی روتنیوم از پیش ماده 12(CO)3Ru بر روی کاتالیست 3O2Co/Al و بررسی عملکرد کاتالیست در واکنش فیشر تروپش، نشریهشیمیومهندسیشیمیایران، (4)32: 17 تا 32 (1392).