طراحی و ساخت کمپلکس حلقوی تیوکربوهیدرازید/مس بر پایه نانوذره های مغناطیسی و به کارگیری آن به عنوان یک نانوکاتالیزگر کارآمد و قابل بازیافت نوین برای سنتز چندجزئی 2-آمینو - H۴- کرومن ها در محیط آبی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده شیمی، دانشگاه دامغان، دامغان، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه پیام نور، تهران، ایران

چکیده

در این پژوهش،  براساس یافته ­های قبلی، ابتدا نانوذره­ های مغناطیسی با روش هسته ـ پوسته با ذره­ های سیلیکون دی­ اکسید پوشانده شده و با واکنش با 3-کلروپروپیل تری­اتوکسی سیلان و سپس با لیگاند آلی تیوکربوهیدرازید (SiO2-TCH@Fe3O4) عامل‌دار شد. سپس یون‌های مس بر روی نانوبستر سیلیکاتی تثبیت شد (SiO2-TCH/Cu@Fe3O4). ساختار نانوذره­ های تهیه شده به عنوان یک هیبرید آلی ـ فلزی مغناطیسی با استفاده از روش‌های FT-IR، FESEM، XRD، EDX، TGA، VSM و BET مورد بررسی و تأیید  قرار گرفت. در ادامه، فعالیت کاتالیزگری آن در سنتز تعدادی از مشتق ­های 4-آریل-2-آمینوکرومن­ ها از طریق واکنش تراکمی سه جزئی آلدئیدهای آروماتیک، مالونیتریل و دیمدون، مورد بررسی قرار گرفت. مزایای این روش ازجمله ارزان­، ایمن و  قابلیت استفاده مجدد نانوکاتالیست، جداسازی آسان کاتالیست ناهمگن از محیط واکنش، زمان کوتاه انجام واکنش، بازده بالا، جداسازی آسان و سریع فراورده و استفاده از حلال غیرسمی آب، موجب شده که این روش در عین سادگی، در حوزه «شیمی سبز» قرار بگیرد.

کلیدواژه‌ها

موضوعات


[1] Lu J., Toy P. H. Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chemical Reviews, 109(2): 815-838 (2009).
[3] Zhu Y., Fang Y., Kaskel S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery. The Journal of Physical Chemistry C, 114: 16382-16388 (2010).
[4] Neuberger T., Schöpf B., Hofmann H., Hofmann M., Von Rechenberg B. Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System. Journal of Magnetism and Magnetic Materials, 293(1): 483-496 (2005).
[5] Pankhurst Q. A., Connolly J., Jones S. K., Dobson J. Applications of Magnetic Nanoparticles in Biomedicine. Journal of Physics D: Applied Physics, 36(13): R167 (2003).
[6] Graham D. L., Ferreira H. A., Freitas P. P. Magnetoresistive-Based Biosensors and Biochips. TRENDS in Biotechnology, 22(9): 455-462 (2004).
[7]  Wang D., He J., Rosenzweig N., Rosenzweig Z. Superparamagnetic Fe2O3 Beads− CdSe/ZnS Quantum Dots Core− Shell Nanocomposite Particles for Cell Separation. Nano Letters, 4(3): 409-413(2004).
[8] Jordan A., Scholz R., Wust P., Fähling H., Felix R. Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles. Journal of Magnetism and Magnetic Materials, 201(1-3): 413-419 (1999).
[9] Hu A., Yee G. T., Lin W. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. Journal of the American Chemical Society, 127(36): 12486-12487 (2005).
[10] Senapati K. K., Borgohain C., Phukan P. Synthesis of Highly Stable CoFe2O4 Nanoparticles and Their Use as Magnetically Separable Catalyst for Knoevenagel Reaction in Aqueous Medium. Journal of Molecular Catalysis A: Chemical, 339(1-2): 24-31 (2011).
[11] Lim C. W., Lee I. S. Magnetically Recyclable Nanocatalyst Systems for the Organic Reactions. Nano Today, 5(5): 412-434 (2010).
[12] Safari J., Banitaba S. H., Khalili S. D. Cellulose Sulfuric Acid Catalyzed Multicomponent Reaction for Efficient Synthesis of 1, 4-Dihydropyridines Via Unsymmetrical Hantzsch Reaction in Aqueous Media. Journal of Molecular Catalysis A: Chemical, 335(1-2): 46-50 (2011).
[13] Shen M., Driver T. G. Iron (II) Bromide-Catalyzed Synthesis of Benzimidazoles from Aryl Azides. Organic letters, 10(15): 3367-3370‏ (2008).
[14] Bahrami K., Khodaei M.M., Naali F. Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. The Journal of organic chemistry, 73(17): 6835-6837 (2008).
[16] Ellis G. P. “The Chemistry of Heterocyclic Compounds in Chromenes, Chromanes, and Chromones”, Edited. by A. Weissberger, EC Taylor (1977).
[17] Galil F. A., Riad B. Y., Sherif S. M., Elnagdi M. H. Activated Nitriles in Heterocyclic Synthesis: A Novel Synthesis of 4-Azoloyl-2-Amino Quinzolines. Chemistry Letters, 1123-1126 (1982).
[18] Varma R. S., Dahiya R. An Expeditious and Solvent-Free Synthesis of 2-Amino-Substituted Isoflav-3-Enes Using Microwave Irradiation. The Journal of Organic Chemistry, 63(22): 8038-8041 (1998).
[19] RW D., Currie K S., Mitchell S. A., Darrow J. W., Pippin D. A. Comb. Chem. High Throughput Screening, 7: 473 (2004).
[20] Patchett A. A., Nargund R. P., Privileged Structures—An Update (2000).
[21] Bonsignore L., Loy G., Secci D., Calignano A., Synthesis and Pharmacological Activity of 2-Oxo-(2H) 1-Benzopyran-3-Carboxamide Derivatives. European Journal of Medicinal Chemistry, 28(6): 517-520 (1993).
[22] Zhang, G., Zhang, Y., Yan, J., Chen, R., Wang, S., Ma, Y., & Wang, R. One-Pot Enantioselective Synthesis of Functionalized Pyranocoumarins and 2-Amino-4 H-Chromenes: Discovery of a Type of Potent Antibacterial Agent. The Journal of organic chemistry, 77(2): 878-888 (2012).
[24] Sabry N. M., Mohamed H. M., Khattab E. S. A., Motlaq S. S., El-Agrody A. M. Synthesis of 4H-Chromene, Coumarin, 12H-Chromeno [2, 3-d] Pyrimidine Derivatives and Some of Their Antimicrobial and Cytotoxicity Activities. European journal of medicinal chemistry, 46(2): 765-772 (2011).
[25] Skommer J., Wlodkowic D., Mättö M., Eray, M., Pelkonen J. HA14-1, A Small Molecule Bcl-2 Antagonist, Induces Apoptosis and Modulates Action of Selected Anticancer Drugs in Follicular Lymphoma B Cells. Leukemia research, 30(3): 322-331 (2006).
[26] Kemnitzer W., Kasibhatla S., Jiang S., Zhang H., Zhao J., Jia S., Vaillancourt L. Discovery of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using a Cell-and Caspase-Based High-Throughput Screening Assay. 2. Structure–Activity Relationships of the 7-and 5-, 6-, 8-Positions. Bioorganic & medicinal chemistry letters, 15(21): 4745-4751 (2005).
[27] Gourdeau H., Leblond L., Hamelin B., Desputeau C., Dong K., Kianicka I., Custeau D., Bourdeau C., Geerts L., Cai S. X., Drewe J., Labrecque D., Kasibhatla S., Tseng B., Antivascular and Antitumor Evaluation of 2-Amino-4-(3-Bromo-4,5-Dimethoxy-Phenyl)-3-Cyano-4H-Chromenes, a Novel Series of Anticancer Agents. Molecular Cancer  Therapeutics, 3: 1375-1383 (2004).
[29] Yang F., Wang H., Jiang L., Yue H., Zhang H., Wang Z., Wang L., A Green and One-Pot Synthesis of Benzo[g]Chromene Derivatives Through a Multi-Component Reaction Catalyzed by Lipase. RSC Advances, 5: 5213-5216 (2015).
[30] Shaabani A., Ghadari R., Ghasemi S., Pedarpour M., Rezayan A. H., Sarvary A., Ng, S. W. Novel One-Pot Three-and Pseudo-Five-Component Reactions: Synthesis of Functionalized Benzo [g]-and Dihydropyrano [2, 3-g] Chromene Derivatives. Journal of Combinatorial Chemistry, 11(6): 956-95‏ (2009).
[33] Yang G., Luo C., Mu X., Wang T., Liu X. Y. Highly Efficient Enantioselective Three-Component Synthesis of 2-Amino-4 H-Chromenes Catalysed by Chiral Tertiary Amine-Thioureas. Chemical Communications, 48(47): 5880-5882 (2012).
[34] Kabalka G. W., Venkataiah B., Das B. C., Synthesis of 2H-Chromenes in Ionic Liquid Solvents. Synlett, 12: 2194-2196 (2004).
[35] Makarem S., Mohammadi A. A., Fakhari A. R. A Multi-Component Electro-Organic Synthesis of 2-Amino-4H-Chromenes. Tetrahedron Letters, 49(50): 7194-7196‏ (2008).
[36] Shaabani A., Ghadari R., Ghasemi S., Pedarpour M., Rezayan A. H., Sarvary A., Ng S. W. Novel One-Pot Three-and Pseudo-Five-Component Reactions: Synthesis of Functionalized Benzo [g]-and Dihydropyrano [2, 3-g] Chromene Derivatives. Journal of Combinatorial Chemistry, 11(6): 956-959 (2009).
[38] Kalhor M., Rezaee‐Baroonaghi F., Dadras A., Zarnegar Z. Synthesis of New TCH/Ni‐Based Nanocomposite Supported on SBA‐15 and Its Catalytic Application for Preparation of Benzimidazole and Perimidine Derivatives. Applied Organometallic Chemistry33(5): e4784. (2019).
[40] Andalibi Salem S., Khazaei A., Seyf J. Y., Sarmasti N., Mahmoudiani Gilan, M. Preparation of Magnetic Cu (II) Nano-Structure (Based on Nano-Fe3O4) and Application to the Synthesis of Hexahydroquinoline Derivatives. Polycyclic Aromatic Compounds, 1-14‏ (2019).
[41] Kalhor, M., Sajjadi, S. M., Dadras, A. Cu/TCH-pr@ SBA-15 Nano-Composite: A New Organometallic Catalyst for Facile Three-Component Synthesis of 4-Arylidene-Isoxazolidinones. RSC Advances, 10(46): 27439-27446‏ (2020).
[42] Alizadeh, A., Khodaei, M. M., Kordestania, D., Beygzadeh, M. A Biguanide/Pd-Decorated SBA-15 Hybrid Nanocomposite: Synthesis, Characterization and Catalytic Application. Journal of Molecular Catalysis A: Chemical, 372: 167-174‏ (2013).
[43] Hu, J., Zou, Y., Liu, J., Sun, J., Yang, X., Kan, Q., Guan, J. Immobilization of Cu-Chelate Onto SBA-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent. Research on Chemical Intermediates, 41(8): 5703-5712 (2015).
[44] Sarkar, K., Dhara, K., Nandi, M., Roy, P., Bhaumik, A., Banerjee, P. Selective Zinc (II)‐Ion Fluorescence Sensing by a Functionalized Mesoporous Material Covalently Grafted with a Fluorescent Chromophore and Consequent Biological Applications. Advanced Functional Materials, 19(2): 223-234‏ (2009).
[45] Siddiqui, S. A., Narkhede, U. C., Palimkar, S. S., Daniel, T., Lahoti, R. J., Srinivasan, K. V. Room Temperature Ionic Liquid Promoted Improved and Rapid Synthesis of 2, 4, 5-Triaryl Imidazoles from Aryl Aldehydes and 1, 2-Diketones or α-Hydroxyketone. Tetrahedron, 61(14): 3539-3546 (2005).
[46] Xu, H., Tong, N., Cui, L., Lu, Y., Gu, H. Preparation of Hydrophilic Magnetic Nanospheres with High Saturation Magnetization. Journal of magnetism and magnetic materials, 311(1): 125-130 (2007).
[49] Boumoud, B., Yahiaoui, A. A., Boumoud, T., Debache, A. Available Online www. jocpr. com. Journal of Chemical and Pharmaceutical Research, 4(1): 795-799 (2012).
[50] Niknam, K., Borazjani, N., Rashidian, R., Jamali, A. Silica-Bonded N-Propylpiperazine Sodium N-Propionate as Recyclable Catalyst for Synthesis of 4H-Pyran Derivatives. Chinese Journal of Catalysis, 34(12): 2245-2254‏ (2013).