عامل‌های مؤثر در سنتز نانوذره های نقره به روش احیای شیمیایی برای کاربرد در قطعه های الکترونیکی چاپی

نوع مقاله : مروری

نویسندگان

دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

قطعه­ های الکترونیکی چاپی نسل جدیدی از قطعه ­های الکترونیکی می ­باشند که دارای ویژگی­ هایی مانند هزینه پایین تولید، دوام بالا، روش ­های تولید دوست دار محیط ­زیست، زیست­تخریب­پذیر بودن، مصرف انرژی پایین­تر و بازده تولید بالاتر هستند. جزء اصلی در این قطعه ­ها، جوهر رسانا است که در آن به طور عموم از نانوذره­های نقره به عنوان ماده رسانا، به­دلیل مقاومت الکتریکی پایین (رسانایی بالا) و مقاوم بودن در برابر اکسیدشدن در هوا استفاده می­ شود. روش­ های متنوعی برای سنتز نانوذره  ­های نقره ارایه شده که هر کدام از این روش­ها برتری­ ها و کاستی­های خاص خود را دارند. در میان این روش ­ها، روش احیای شیمیایی به سبب سادگی روش تولید و هم­چنین توانایی کنترل شکل و اندازه ­ی نانوذره ­ها با تغییر عامل­ های مؤثر در واکنش، یکی از متداول­ ترین روش­ های تهیه نانوذره ­های نقره است. در این روش، نانوذره ­ها توسط احیای نقره نیترات با استفاده از احیاکننده ایجاد شده و به ­منظور جلوگیری از تجمع نانوذره ­ها از پایدارکننده نیز استفاده می­ شود. در طول فرایند احیا، احیاکننده الکترون به یون نقره (Ag+) داده و آن ­را به نقره فلزی (Ag0) تبدیل می ­کند. در این روش پارامترهای زیادی روی اندازه و شکل نانوذره ­ها دخالت دادند هستند که از جمله آن­ها می­ت وان به دما، زمان واکنش، نوع و مقدار احیاکننده و pH  اشاره نمود. در این پژوهش، پارامترهای مؤثر در سنتز نانوذره­ های نقره به روش احیای شیمیایی مورد بررسی قرار گرفته است و در قسمت پایانی مقاله، مروری بر تهیه جوهر رسانا دارای نانوذره­ های نقره برای کاربرد در قطعه­ های الکترونیکی چاپی انجام می­ گیرد.

کلیدواژه‌ها

موضوعات


[1]  Merilampi S., Laine-Ma T., Ruuskanen P., The Characterization of Electrically Conductive Silver Ink Patterns on Flexible Substrates, Microelectronics Reliability 49: 782–790 (2009).
[2]  Perelaer J., Smith P.J., Mager D., Soltman D., Volkman S.K., Subramanian V., Korvink J.G., Schubert U.S., Printed Electronics: the Challenges Involved in Printing Devices, Interconnects, and Contacts Based on Inorganic Materials, J. Mater. Chem. 20: 8446–8453 (2010).
[3]  Liu L., Wan X., Sun L., Yang S., Dai Z., Tian Q., Lei M., Xiao X., Jiang C., Wu W., Anion-Mediated Synthesis of Monodisperse Silver Nanoparticles Useful for Screen Printing of Highconductivity Patterns on Flexible Substrates for Printed Electronics, RSC Adv. 5: 9783–9791 (2015).
[4]   Wu W., Yang S., Zhang S., Zhang H., Jiang C., Fabrication, Characterization and Screen Printing of Conductive Ink Based on Carbon@Ag Core–Shell Nanoparticles, Journal of Colloid and Interface Science 427: 15–19 (2014).
[5]   Kim S., Sung H.J., Effect of Printing Parameters on Gravure Patterning with Conductive Silver Ink, J. Micromech. Microeng. 25: 045004-045017 (2015).
[6]   Liu W., Fang Y., Xu Y.F., Li X., Li L.H., The Effect of Grid Shape on the Properties of Transparent Conductive Films Based on Flexographic Printing, Sci China Tech Sci 57(12): 2536-2541 (2014).
[7]   Kim D., Jeong S., Park B.K., Moon J., Direct Writing of Silver Conductive Patterns: Improvement of Film Morphology and Conductance by Controlling Solvent Compositions, Appl. Phys. Lett. 89: 264101-264103 (2006).
[8]  Dang M.C., Dang T.M.D., Fribourg-Blanc E., Silver Nanoparticles Ink Synthesis for Conductive Patterns Fabrication Using Inkjet Printing Technology, Adv. Nat. Sci.: Nanosci. Nanotechnol. 6: 015003-015010 (2015).
[10] Tekin E., Smith P.J., Schubert U.S., Inkjet Printing as a Deposition and Patterning Tool for Polymers and Inorganic Particles, Soft Matter 4: 703–713 (2008).
[11] Perelaer J., Hendriks C.E., de Laat A.W.M., Schubert U.S., One-Step Inkjet Printing of Conductive Silver Tracks on Polymer Substrates, Nanotechnology 20: 165303-165307 (2009).
[12] Smith P.J., Shin D.Y., Stringer J.E., Derby B., Direct Ink-Jet Printing and Low Temperature Conversion of Conductive Silver Patterns, J Mater Sci 41: 4153–4158 (2006).
[13] Zhu H., Xiao Z., Liu D., Li Y., Weadock N.J., Fang Z., Huang J., Hu L., Biodegradable Transparent Substrates for Flexible Organic-Light-Emitting Diodes, Energy Environ. Sci. 6: 2105-2111 (2013).
[14] Jeong S., Song H.Ch., Lee W.W., Choi Y., Ryu B.-H., Preparation of Aqueous Ag Ink with Long-Term Dispersion Stability and its Inkjet Printing for Fabricating Conductive Tracks on a Polyimide Film, Journal of Applied Physics 108: 102805-102809 (2010).
[15] Zhou X., Li W., Wua M., Tang Sh., Liu D., Enhanced Dispersibility and Dispersion Stability of Dodecylamine-protected Silver Nanoparticles by Dodecanethiol for Ink-Jet Conductive Inks, Applied Surface Science 292: 537– 543 (2014).
[16] Albrecht A., Rivadeneyra A., Abdellah A., Lugli P., Salmerón J.F., Inkjet Printing and Photonic Sintering of Silver and Copper Oxide Nanoparticles for Ultra-Low-Cost Conductive Patterns, Journal of Materials Chemistry C, 4(16): 3546-3554 (2016). 
[17] Greer J.R., Street R.A., Thermal Cure Effects on Electrical Performance of Nanoparticle Silver Inks, Acta Materialia, 55(18): 6345-6349 (2007).
[18] Rezvani Moghadam A., Khatibzadeh M., Different Synthesis Methods of Copper Nanoparticles Used in Conductive Inks: Effective Parameters on the Synthesis, Journal of Studies in Color World, 4(4): 49-62 (2015).
[19] Kamyshny A., Steinke J., Magdassi Sh., Metal-based Inkjet Inks for Printed Electronics, The Open Applied Physics Journal, 4: 19-36 (2011).
[20] Kamikoriyama Y., Sawamoto H., Horiuchi M., Nickel Ink and Conductor Film Formed of Nickel Ink, U.S. Patent No. 8486306B2 (2013).
[21] Cha K., Hong H.W., Choi Y.G., Lee M.J., Park J.H., Chae H.K., Ryu G., Myung H., Comparison of Acute Responses of Mice Livers to Short-Term Exposure to Nano-Sized or Micro-Sized Silver Particles, Biotechnol Lett, 30: 1893–1899 (2008).
[22] Janardhanan R., Karuppaiah M., Hebalkar N., Rao T.N., Synthesis and Surface Chemistry of Nano Silver Particles, Polyhedron, 28: 2522–2530 (2009).
[23] معادی، تارا؛ قهرمان زاده، رامین؛ یوسفی، مریم؛ محمدی، فرشته، تهیه نانوذره های نقره توسط عصاره چهار گونه گیاهی و بررسی ویژگی­های ضد میکروبی آن­ها، نشریه شیمی و مهندسی شیمی ایران، (4)33: 1 تا 9 (1393).‎
[24] Yi Z., Li X., Xu X., Lu B., Luo J., Wu W., Yi Y., Tang Y., Green, Effective Chemical Route for
the Synthesis of Silver Nanoplates in Tannic Acid Aqueous Solution
, Colloids and Surfaces A: Physicochem. Eng. Aspects, 392: 131– 136 (2011).
[25] Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B., Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods, Research in Pharmaceutical Sciences, 9(6): 385-406 (2014).
[26] Azarkhalil M.S., Keyvani B., Synthesis of Silver Nanoparticles from Spent X-Ray Photographic Solution via Chemical Rreduction, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(3): 1-8 (2016).
[27] Xu G.N., Qiao X.L., Qiu X.L., Chen J.G., Preparation and Characterization of Stable Monodisperse Silver Nanoparticles via Photoreduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320: 222-226 (2008).
[28] فروغی راد، سحر؛ خطیب زاده، مرضیه، تهیه سبز نانوذره های نقره مورد استفاده در جوهرهای رسانا به روش سونوشیمیایی، نشریه شیمی و مهندسی شیمی ایران، (1)34: 1 تا 9 (1394).‎
[29] Capek I., Preparation of Metal Nanoparticles in Water-in-Oil (w/o) Microemulsions, Advances
in Colloid and Interface Science,
110: 49-74 (2004).
[30] Yin B., Ma H., Wang S., Chen S., Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly (N-Vinylpyrrolidone), The Journal of Physical Chemistry B, 107: 8898-904 (2003).
[31] Roucoux A., Schulz J., Patin H., Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?, Chem. Rev., 102: 3757-3778 (2002). 
[32] Chaloupka K., Malam Y., Seifalian A.M., Nanosilver as a New Generation of Nanoproduct in Biomedical Applications, Trends in Biotechnology, 28(11): 580-588 (2010).
[33] Jiu J., Araki T., Wang J., Nogi M., Sugahara T., Nagao S., Koga H., Suganuma K., Nakazawa E., Hara M., Uchida H., Shinozaki K., Facile Synthesis of Very-Long Silver Nanowires for Transparent Electrodes, J. Mater. Chem. A., 2: 6326–6330 (2014).
[34] Kamali M., Ghorashi S.A.A., Asadollahi M.A., Controllable Synthesis of Silver Nanoparticles using Citrate as Complexing Agent: Characterization of Nanopartciles and Effect of pH on Size and Crystallinity, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 31(4): 21-28 (2012).
[35] Bergin S.M., Chen Y.H., Rathmell A.R., Charbonneau P., Li Z.Y., Wiley B.J., The Effect of Nanowire Length and Diameter on the Properties of Transparent, Conducting Nanowire Films, Nanoscale, 4: 1996-2004 (2012).
[36] Skrabalak S.E., Wiley B.J., Kim M., Formo E.V., Xia Y., On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent, Nano Letters 8(7): 2077-2081 (2008).
[37] Jiang X.C., Chen W.M., Chen C.Y., Xiong S.X., Yu A.B., Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach, Nanoscale Res Lett, 6(1): 32-40 (2011).
[38] Yi Z., Li X., Xu X., Luo B., Luo J., Wu W., Yi Y., Tang Y., Green, Effective Chemical Route for the Synthesis of Silver Nanoplates in Tannic Acid Aqueous Solution, Colloids and Surfaces A: Physicochem. Eng. Aspects, 392: 131– 136 (2011).
[39] Dai Y., Deng T., Jia Sh., Jin L., Lu F., Preparation and Characterization of Fine Silver Powder with Colloidal Emulsion Aphrons, Journal of Membrane Science, 281: 685–691 (2006).
[40] Qin Y., Ji X., Jing J., Liu H., Wu H., Yang W., Size Control over Spherical Silver Nanoparticles by Ascorbic Acid Reduction, Colloids and Surfaces A: Physicochem. Eng. Aspects, 372: 172–176 (2010).
[41] Songping W., Shuyuan M., Preparation of Ultrafine Silver Powder using Ascorbic Acid as Reducing Agent and its Application in MLCI, Materials Chemistry and Physics, 89: 423–427 (2005).
[42] Chou K.S., Lu Y.C., Lee H.H., Effect of Alkaline Ion on the Mechanism and Kinetics of Chemical Reduction of Silver, Materials Chemistry and Physics, 94: 429–433 (2005).
[43] Panigrahi S., Kundu S., Ghosh S.K., Nath S., Pal T., General Method of Synthesis for Metal Nanoparticles, Journal of Nanoparticle Research, 6: 411–414 (2004).
[45] Singh M., Sinha I., Mandal R.K., Role of pH in the Green Synthesis of Silver Nanoparticles, Materials Letters, 63: 425–427 (2009).
[46] Sekine T., Fukuda K., Kumaki D., Tokito S., Enhanced Adhesion Mechanisms between Printed Nano-Silver Electrodes and Underlying Polymer Layers, Nanotechnology, 26: 321001-321008 (2015). 
[47] Rajan K., Roppolo I., Chiappone A., Bocchini S., Perrone D., Chiolerio A., Silver Nanoparticle Ink Technology: State of the Art, Nanotechnology, science and applications, 9: 1-13 (2016).
[48] Fuller S.B., Wilhelm E.J., Jacobson J.M., Ink-Jet Printed Nanoparticle Microelectromechanical Systems, Journal of Microelectromechanical Systems, 11(1): 54-60 (2002).
[49] Szczech J.B., Megaridis C.M., Gamota D.R., Zhang J., Fine-Line Conductor Manufacturing Using Drop-On-Demand PZT Printing Technology, IEEE Transactions On Electronics Packaging Manufacturing, 25(1): 26-33 (2002).
[50] Lee H.H., Chou K.S., Huang K.C., Inkjet Printing of Nanosized Silver Colloids, Nanotechnology, 16: 2436-2441 (2005).
[51] Perelaer J., de Gans B.J., Schubert U.S., Ink‐jet Printing and Microwave Sintering of Conductive Silver Tracks, Advanced Materials, 18(16): 2101-2104 (2006).
[52] Reinnhold I., Hendriks C.E., Eckardt R., Kranenburg J.M., Perelaer J., Baumann R.R., Schubert U.S., Argon Plasma Sintering of Inkjet Printed Silver Tracks on Polymer Substrates, J Mater Chem., 19(21): 3384-3388 (2009).
[53] Joo M., Lee B., Jeong S., Lee M., Comparative Studies on Thermal and Laser Sintering for Highly Conductive Cu Films Printable on Plastic Substrate, Thin Solid Films, 520(7): 2878-2883 (2012).
[54] Wunscher S., Rasp T., Grouchko M., Kamyshny A., Paulus R.M., Perelaer J., Kraft T., Magdassi Sh., Schubert U.S., Simulation and Prediction of the Thermal Sintering Behavior for a Silver Nanoparticle Ink Based on Experimental Input, J. Mater. Chem. C., 2: 6342–6352 (2014).
[55] Perelaer J., de Laat A.W.M., Hendriks Ch.E., Schubert U.S., Inkjet-Printed Silver Tracks: Low Temperature Curing and Thermal Stability Investigation, J. Mater. Chem., 18: 3209–3215 (2008).
[56] Shen W., Zhang X., Huang Q., Xu Q., Song W., Preparation of Solid Silver Nanoparticles for Inkjet Printed Flexible Electronics with High Conductivity, Nanoscale, 6(3): 1622-1628 (2014).
[57] Wang Z., Wang W., Jiang Z., Yu D., Low Temperature Sintering Nano-Silver Conductive Ink Printed on Cotton Fabric as Printed Electronics, Progress in Organic Coatings, 101: 604-611 (2016).
[58] Aleeva Y., Pignataro B., Recent Advances in Upscalable Wet Methods and Ink Formulations for Printed Electronics, Journal of Materials Chemistry C, 2(32): 6436-6453 (2014).
[59] Jahn S.F., Blaudeck T., Baumann R.R., Jakob A., Ecorchard P., Rüffer T., Lang H., Schmidt P., Inkjet Printing of Conductive Silver Patterns by using the First Aqueous Particle-Free MOD Ink without Additional Stabilizing Ligands, Chemistry of Materials, 22(10): 3067-3071 (2010).
[60] Chang Y., Wang D.Y., Tai Y.L., Yang Z.G., Preparation, Characterization and Reaction Mechanism of a Novel Silver-Organic Conductive Ink, Journal of Materials Chemistry, 22(48): 25296-25301 (2012).