بررسی محاسباتی حالت های الکترونی یک تایی، سه تایی و پنج تایی نایترنواتینیل هالوسایلیلن

نوع مقاله: علمی-پژوهشی

نویسندگان

1 کرج، دانشگاه آزاد اسلامی، واحد کرج، دانشکده علوم پایه، گروه شیمی

2 تهران، دانشگاه تربیت مدرس، دانشکده علوم پایه، گروه شیمی

چکیده

:از جفت شدن یک مرکز سایلیلن سه­تایی و یک مرکز نایترن سه­تایی با اسپین یکسان با رابط استیلنی، ساختارهای جدیدی از حد واسط­ه ای نایترنواتینیل-X-سایلیلن با حالت الکترونی پنج­ تایی به دست می ­آیند. که به­ طور تجربی قابل دسترسی نیستند (Br، Cl، F، X=H، X-Si-C≡C-N). سایلیلن پوسته­بسته یک­تایی (0π2δ)  و نایترن سه­تایی(1π1π) که از طریق استیلن جفت شده اند یک ساختار حد واسط نایترنواتینیل-X-سایلیلن با حالت الکترونی سه­تایی را ایجاد می کنند که حدود kcal/mol 61-44 پایدارتر از گونه ­های پنج­تایی شان است. حالت الکترونی یک‌تایی‏ شامل یک سایلیلن و یک نایترن سه‌تایی منتهی با اسپین مخالف است. درحالی که حالت‌های‏ الکترونی یک‌تایی‏ و سه‌تایی و پنج‌تایی نایترنواتینیل-X-سایلیلن بر روی منحنی انرژی پتانسیل کمینه هستند، حالت الکترونی پایه گونه‌های نایترنواتینیل­هالوسایلیلن حالت الکترونی سه‌تایی است. محاسبات با استفاده از روش­های PLY3B، 2MP،(SDTQ)4PM و مجموعه پایه**G++311-6  انجام شده است.

کلیدواژه‌ها

موضوعات


[1] Klessinger M., Borden W. Th., "Diradicals", John Wiley & Sons Ltd., New York (1983).

[2] Zuev S. P., Sheridan S. R., Organic polycarbenes: Generation, Characterization, and Chemistry, Tetrahedron, 51: 11337-11376 (1995).

[3] Nicolaides A., Nakayama T., Yamazaki K., Tomioka H., Koseki S., Stracener L.L., Mc Mahon R.Y., Of ortho-Conjugatively Linked Reactive Intermediates: The Case of Ortho-Phenylene(Bis)Nitrene-Carbenonitrene, and -(Bis) Carbene, Journal of the American Chemical Society, 121: 10563-10572 (1999).

[4] Inagaki S., Iwase K., Goto N., Cross vs. Linear Conjugation as Four p-orbitals. Substituted Vinylcarbenes and Biscarbenes as Four-.pi.-electron Systems, The Journal of Organic Chemistry, 51: 362-366 (1986).

[5] Enyo T., Arai N., Nakane N., Nicolaides A., Tomioka H., o-Phenylene Halocarbenonitrenes and o-Phenylene Chlorocarbenocarbene:  A Combined Experimental and Computational Approach, The Journal of Organic Chemistry, 70: 7744-7754 (2005).

[6] Flock M., Pierloot K., Nguyen M.T., Vanquickenborne L.G., p-Phenylbisphosphinidene and Its Carbene and Nitrene Analogues:  An ab Initio Study, The Journal of Physical Chemistry A, 104: 4022-4029 (2000).

[7] Nicolaides A., Enyo T., Miura D., Tomioka H., p-Phenylenecarbenonitrene and Its Halogen Derivatives: How Does Resonance Interaction between a Nitrene and a Carbene Center Affect the Overall Electronic Configuration?, Journal of the American Chemical Society, 123: 2628-2636 (2001).

[8] Ling C., Minato M., Lahti P.M., Van Willigen H., Models for Intramolecular Exchange in Organic .pi.-Conjugated Open-Shell Systems. A Comparison of 1,1-Ethenediyl and Carbonyl Linked bis(arylnitrenes), Journal of the American Chemical Society, 114: 9959-9969 (1992).

[9] Enyo T., Nicolaides A., Tomioka H., Halogen Derivatives of m-Phenylene(carbeno)nitrene:  A Switch in Ground-State Multiplicity, The Journal of Organic Chemistry, 67:  5578-5587 (2002).

[10] Borden W.T., Davidson E.R., Theoretical Studies of Diradicals Containing Four .pi. Electrons, Accounts of Chemical Research, 14: 69-76 (1981).

[11] Dougherty D.A., Spin Control in Organic Molecules, Accounts of Chemical Research, 24: 88-94 (1991).

[12] Itoh K., Electron Spin Resonance of an Aromatic Hydrocarbon in Its Quintet Ground State, Chemical Physics Letters, 1: 235-238 (1967).

[13] Wasserman E., Murray R.W., Yager W.A., Trozzolo A.M., Smolinsky G., Quintet Ground States of m-Dicarbene and m-Dinitrene Compounds, Journal of the American Chemical Society, 89: 5076-8 (1967).

[14]  Iwamura H., "Advances in Physical Organic Chemistry, High-spin Organic Molecules and Spin Alignment in Organic Molecular Assemblies", Elsevier (1991).

[15] Subhan W., Rempala P., Sheridan R.S., p-Phenylenebismethylene:  Characterization, Calculation, and Conversion to a Conjugated Bis-Carbonyloxide, Journal of the American Chemical Society, 120 11528-11529 (1998).

[16] Zuev P., Sheridan R.S., p-Phenylenebis(chloromethylene): Resonance Interaction of Two Singlet Carbenes, Journal of the American Chemical Society, 115: 3788-3789 (1993).

[17] Zuev P.S., Sheridan R.S., Substituent Switching of Biscarbene Electronic Configurations:
p-Phenylenebis(fluoromethylene)
, Journal of the American Chemical Society, 116:  9381-9382 (1994).

[18] Nicolaides A., Tomioka H., Murata S., Direct Observation and Characterization of
p-Phenylenebisnitrene. A Labile Quinoidal Diradical
, Journal of the American Chemical Society, 120: 11530-11531 (1998).

[19] Kassaee M.Z., Haerizade B.N., Arshadi S., Halogenated Isomers of the Interstellar C3H2: An ab Initio Comparative Study, Journal of Molecular Structure: Theo. Chem., 639: 187-193 (2003).

[20] Kassaee M.Z., Sayyed-Alangi S.Z., Hossaini Z., Ab initioEnergy surface of Interstellar H–C3H vs. NC–C3H and H3CO–C3H, Journal of Molecular Structure: THEOCHEM, 676: 7-14 (2004).

[21] Kassaee M.Z., Hossaini Z.S., Haerizade B.N., Sayyed-Alangi S.Z., Ab Initio Study of Steric Effects Due to Dialkyl Substitutions on H2C3 Isomers, Journal of Molecular Structure: Theo. Chem., 681: 129-135 (2004).

[22] Kassaee M.Z., Musavi S.M., Ghambarian M., Buazar F., Multiplicity vs. Stability in C2HP Carbenes and Their Halogenated Analogues: an ab Initio and DFT Study, Journal of Molecular Structure: Theo. Chem., 726:  171-181 (2005).

[23] Kassaee M.Z., Musavi S.M., Jalalimanesh N., A New Generation of Intermediates at ab Initio and DFT Levels: Allylic Carbenonitrenes, C=(X)C–NX=H, CH3, COOH, F, OH, OCH3, CF3, CN, and NH2, Journalof Theoretical and Computational Chemistry, 07: 367-379 (2008).

[24] Kassaee M. Z., Musavi S. M., Buazar F., An ab Initio and DFT Comparative Study of Electronic Effects on Spin Multiplicities and Structures of X–C2N Carbenes, Journal of Molecular Structure: Theo. Chem., 728: 15-24. (2005)

[25] Kassaee M. Z., Soleimani-Amiri S., Majdi M., Musavi S. M., Novel Quintet and Triplet (Nitrenoethynyl)Halomethylenes at Theoretical Levels, Struct. Chem., 21: 229-35 (2010).

[26] Langdon S.M., Legault C.Y., Gravel M., Origin of Chemoselectivity in N-Heterocyclic Carbene Catalyzed Cross-Benzoin Reactions: DFT and Experimental Insights, The Journal of Organic Chemistry, 80: 3597-610 (2015).

[27] Nelson J. W., Grundy L. M., Dang Y., Wang Z.-X., Wang X., Mechanism of Z-Selective Olefin Metathesis Catalyzed by a Ruthenium Monothiolate Carbene Complex: A DFT Study, Organometallics, 33: 4290-4294 (2014).

[28] Menezes da Silva V.H., Braga A.A.C., Cundari T.R., N-Heterocyclic Carbene Based Nickel and Palladium Complexes: A DFT Comparison of the Mizoroki–Heck Catalytic Cycles, Organometallics, 35(18): 3170-3181 (2016).

 [29] بلبل امیری، محدثه؛ ارشدی، ستار؛ عزیزی، زهرا؛ بررسی برهم کنش گاز خردل بر روی نانولوله های آلومینیوم ـ نیترید زیگزاگ (4،0)، (5،0) و (6،0), نشریه شیمی و مهندسی شیمی ایران, (4)33: 31 تا 41 (1393).

[30] مسعودی، مریم؛ صالحی، حمدا...؛ محاسبه ی پارامترهای ساختاری و چگالی ابر الکترونی ترکیب TaB2 با استفاده از روش شبه پتانسیل, نشریه شیمی و مهندسی شیمی ایران، (2)33: 6 تا 41 (1393).

[31] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Li X., Knox J.E., Hatchan H.P., Cross J.B., Adano C., Jaramillo J., Gompert S., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Gui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Viu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., WOng M.W., Gonzalez C., Pople J.A.,, "Gaussian 03", Gaussian, Inc., Pittsburgh PA, (2003).

[32] Becke A.D., Density‐Functional Thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact‐Exchange Mixing, The Journal of Chemical Physics, 104: 1040-1046 (1996).

[33] Adamo C., Barone V., Toward Reliable Adiabatic Connection Models Free from Adjustable Parameters, Chemical Physics Letters, 274: 242-250 (1997).

[34] Krishnan R., Binkley J.S., Seeger R., Pople J.A., Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions, The Journal of Chemical Physics, 72: 650-654 (1980).

[35]  Pople J.A., Head‐Gordon M., Raghavachari K., Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies, The Journal of Chemical Physics, 87: 5968-5975 (1987).

[36] Scuseria G.E., Schaefer H.F., Is Coupled Cluster Singles and Doubles (CCSD) More Computationally Intensive than Quadratic Configuration Interaction (QCISD)?, The Journal of Chemical Physics, 90: 3700-3703 (1989).

[37] Krishnan R., Pople J.A., Approximate Fourth-Order Perturbation theory of the Eelectron Correlation Energy, International Journal of Quantum Chemistry, 14: 91-100. (1978).

[38] Krishnan R., Frisch M.J., Pople J.A., Contribution of Triple Substitutions to the Electron Correlation Energy in Fourth Order Perturbation Theory, The Journal of Chemical Physics, 72: 4244-4246 (1980).

[39] Hout R.F., Levi B.A., Hehre W.J., Effect of Electron Correlation on Theoretical Vibrational Frequencies, Journal of Computational Chemistry, 3: 234-250 (1982).

[40] DeFrees D.J., McLean A.D., Molecular Orbital Predictions of the Vibrational Frequencies of Some Molecular Ions, The Journal of Chemical Physics, 82: 333-341 (1985).

[41] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chemical Reviews, 88: 899-926 (1988).

[42] Apeloig Y., Pauncz R., Karni M., West R., Steiner W., Chapman D., Why Is Methylene a Ground State Triplet while Silylene Is a Ground State Singlet?, Organometallics, 22: 3250-3256 (2003)

[43] Gaspar P.P., Xiao M., Pae D.H., Berger D.J., Haile T., Chen T., Lei D., Winchester W.R., Jiang P., The Quest for Triplet Ground State Silylenes, Journal of Organometallic Chemistry, 646: 68-79 (2002).