اکسایش فتوکاتالیزی سولفیدها توسط نانوکامپوزیت TiO2@GO-CdSe اصلاح شده با CdS

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشکده شیمی، دانشگاه کردستان، سنندج، ایران

چکیده

در این پژوهش فرایند اکسایش فتوکاتالیزی سولفیدها در شرایط بهینه توسط اکسیژن هوا به­ عنوان عامل اکسنده و نور مرئی در حضور نانو کامپوزیت اصلاح شدهTiO2@GO-CdSe با CdS در مقایسه با TiO2@GO-CdSe به تنهایی مورد بررسی قرار گرفت. نانو کامپوزیت اصلاح شده با تثبیت هم زمان نانوذره­ های کادمیم سلنید، کادمیم سولفید و تیتانیم دی اکسید بر روی صفحه ­های گرافن اکسید به روش هیدروترمال تهیه شد و ماهیت آن با مقایسه با مرجع علمی پیشین تأیید شد. اندازه نانوذره ­ها در بازه­ ی 60 تا 80 نانومتر به دست آمد. بازده اکسایش انتخابی سولفیدها به سولفوکسیدها توسط نانوکامپوزیت اصلاح شده  TiO2@GO-CdSeS به مقدار چشمگیری در حد 65 درصد افزایش یافت. همچنین روند تغییرهای بازده نشانگر بالاتر بودن بازده واکنشاکسایش فتوکاتالیزی سولفیدهای آروماتیک نسبت به مشتق ­های آلیفاتیک و یا اکسیژن­ دار می ­باشد. این نانوکامپوزیت فعالیت فتوکاتالیزی بالا در بازه زمانی کوتاه و با قابلیت استفاده دوباره را نشان داد.

کلیدواژه‌ها

موضوعات


[1] Chen T-H., Yuan Z., Carver A., Zhang R., Visible Light-Promoted Selective Oxidation of Sulfides to Sulfoxides Catalyzed by Ruthenium Porphyrins with Iodobenzene Diacetate, Appl. Catal. A Gen., 478: 275–282 (2014).

[2] Kubacka A., Fernández-García M., Colón G., Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev., 112: 1555-1614 (2011).

[3] Chen C., Ma W., Zhao J., Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation, Chem. Soc. Rev., 39: 4206-4219 (2010).

[4] Augugliaro V., Palmisano L., Green Oxidation of Alcohols to Carbonyl Compounds by Heterogeneous Photocatalysis, Chem. Sus. Chem., 3: 1135–1138 (2010).[5]    Abdullah A.M., Al-Thani N.J., Tawbi K., Al-Kandari H., Carbon/Nitrogen-Doped TiO2New Synthesis Route, Characterization and Application for Phenol Degradation, Arab J. Chem., 9: 229-237 (2016).

[6] Inturi S.N.R., Boningari T., Suidan M., Smirniotis P.G., Stabilization of Cr in Ti/Si/Cr Ternary Composites by Aerosol Flame Spray-Assisted Synthesis for Visible-Light-Driven Photocatalysis, Ind. Eng. Chem. Res., 55(46): 11839-11849 (2016).

[7] Barreca D., Carraro G., Warwick M.E.A., Kaunisto K., Gasparotto A., Gombac V., Sada C., Turner S., Tendeloo G.V., Maccato C., Fornasiero P., Fe2O3–TiO2 Nanosystems by a Hybrid PE-CVD/ALD Approach: Controllable Synthesis, Growth Mechanism, and Photocatalytic Properties, Cryst. Eng. Comm., 17: 6219-6226 (2015).

[8] Zhang Z., Wang W., Wang L., Sun S., Enhancement of Visible-Light Photocatalysis by Coupling with Narrow-Band-Gap Semiconductor: A Case Study on Bi2S3/Bi2WO6, ACS Appl. Mater. Interfaces., 4:5 93-597 (2012).

[9] Baia M., Melinte G., Barbu-Tudoran L., Diamandescu L., Iancu V., Cosoveanu V., Danciu V., Baia L., Highly Porous Nanocomposites Based on TiO2-Noble Metal Particles for Sensitive Detection of Water Pollutants by SERS, In: J. Phys. Conf. Ser. IOP Publishing, p 12059 (2011).

[10] Sharma V., Kumar S., Krishnan V., Shape Selective Au-TiO2 Nanocomposites for Photocatalytic Applications, Mater. Today Proc., 3: 1939-1948 (2016).

[11] Sun G., Zhu C., Zheng J., Jiang B., Yin H. Wang H., Qiu S., Yuan J., Wu M., Wu W., Xue Q., Preparation of Spherical and Dendritic CdS@TiO2 Hollow Double-Shelled Nanoparticles for Photocatalysis, Mater. Lett., 166: 113-115 (2016).

[12] Zhao D., Yang C-F., Recent Advances in the TiO2/CdS Nanocomposite Used for Photocatalytic Hydrogen Production and Quantum-Dot-Sensitized Solar Cells, Renew Sustain Energy Rev., 54:1 048-1059 (2016).

[13] Pouretedal H.R., Bastani S., Characterization and Photocatalytic Activity of  ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 11-19 (2015).

[14] Fernandes J.A., Khan S., Baum F., Kohlrausch E.C., Lucena Dos Santos J.A., Baptista D.L., Teixeira S.R., Dupont J., Santos M.J., Synergizing Nanocomposites of CdSe/TiO2 Nanotubes for Improved Photoelectrochemical Activity via Thermal Treatment, Dalton Trans., 45(24): 9925-31 (2016).

[15] Toyoda T., Yindeesuk W., Kamiyama K., Katayama K., Kobayashi H., Hayase S., Shen Q., The Electronic Structure and Photoinduced Electron Transfer Rate of CdSe Quantum Dots on Single Crystal Rutile TiO2: Dependence on the Crystal Orientation of the Substrate, J. Phys. Chem. C, 120: 2047-2057 (2016).

[16] Al‐Haddad A., Wang Z., Zhou M., Tarish S., Vellacheri R., Lei Y., Constructing Well‐Ordered CdTe/TiO2 Core/Shell Nanowire Arrays for Solar Energy Conversion, Small, 12: 5538-5542 (2016).

[17] Zhuo S., Shao M., Lee S-T., Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis, ACS Nano, 6: 1059-1064 (2012).

[18] Yoon H.J., Shanker A., Wang Y., Kozminsky M., Jin Q., Palanisamy N., Burness M.L., Azizi E., Simeone D.M., Wicha M.S., Kim J., Tunable Thermal‐Sensitive Polymer–Graphene Oxide Composite for Efficient Capture and Release of Viable Circulating Tumor Cells, Adv. Mater., 28: 4891-4897 (2016).

[19] Chen L.C., Yeh T.F., Lee Y.L., Teng H., Incorporating Nitrogen-Doped Graphene Oxide Dots with Graphene Oxide Sheets for Stable and Effective Hydrogen Production Through Photocatalytic Water Decomposition, Appl. Catal. A Gen., 521: 118-124 (2016).

[20] Yang K., Feng L., Liu Z., Stimuli Responsive Drug Delivery Systems Based on Nano-Graphene for Cancer Therapy, Adv. Drug Deliv. Rev., 105(Pt B): 228-241 (2016).

[21] Darabdhara G., Boruah P.K., Borthakur P., Hussain N., R. Das RM., Ahamad T., Alshehri S.M., Malgras,V., Wu C.W.M., Yamauchi Y., Correction: Reduced Graphene Oxide Nanosheets Decorated with Au-Pd Bimetallic Alloy Nanoparticles Towards Efficient Photocatalytic Degradation of Phenolic Compounds in Water, Nanoscale, 8: 19174-75 (2016).

[22] Janitabar Darzi S., Movahedi M., Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation, Iran. J. Chem. Chem. Eng. (IJCCE), 3(2): 55-64 (2014).

[23] Wittenberg R., Pradera M.A., Navio J.A., Cumene Photo-Oxidation over Powder TiO2 Catalyst, Langmuir13: 2373–2379 (1997).

[24] Yang M-Q., Zhang N., Xu Y-J., Synthesis of Fullerene–, Carbon Nanotube–, and Graphene–TiO2 Nanocomposite Photocatalysts for Selective Oxidation: A Comparative Study, ACS Appl. Mater. Interfaces, 5: 1156-1164 (2013).

[25] Ribao P., Rivero M.J., Ortiz I., TiO2 Structures Doped with Noble Metals and/or Graphene Oxide to Improve the Photocatalytic Degradation of Dichloroacetic Acid, Environ. Sci. Pollut. Res., 1–10 (2016).

[26] Trapalis A., Todorova N., Giannakopoulou T., Boukos N., Speliotis T., Dimotikali D., Yu J., TiO2/Graphene Composite Photocatalysts for NOx Removal: A Comparison of Surfactant-Stabilized Graphene and Reduced Graphene Oxide, Appl. Catal. B Environ., 180: 637-647 (2016).

[27] Hummers Jr W.S., Offeman R.E., Preparation of Graphitic Oxide, J. Am. Chem Soc., 80: 1339 (1958).

[28] Hosseini F., Mohebbi S., Photocatalytic Oxidation Based on Modified Titanium Dioxide with Reduced Graphene Oxide and CdSe/Cd/S as Nanohybrid Materials, J. Cluster Sci., 29: 289-300 (2018).

[29] Jingshan L., Lin Ma., Tingchao H., Chin F.N., Shijie W., Handong S., Hong J.F., TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties, J. Phys. Chem. C, 116: 11956-11963 (2012).

[30] Liuan G., Jingyu W., Hao C., Yizhi Z., Lifei L., Xijiang H., One-Step Preparation of Graphene-Supported Anatase TiO2 with Exposed {001} Facets and Mechanism of Enhanced Photocatalytic Properties, ACS Appl. Mater. Interfaces, 5: 3085-3093 (2013).