مطالعه نظری برهمکنش های مولکولی مشتق های بنزن پارا استخلاف شده با هیدروژن سیانید

نوع مقاله: علمی-پژوهشی

نویسنده

واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران

چکیده

در این مقاله اثرهای برهمکنش ­های غیر کووالانسی بررسی شده ­اند، جایی کههیدروژن سیانید  به عنوان یک دهنده پروتون و سامانه­ های π گوناگون مانند مشتق­ های بنزن پارا استخلاف شده (H، F، Cl، OH، SH، CH3 و NH2) به عنوان پذیرنده پروتون عمل کرده اند. کمپلکس ­ها با روش B3LYP با استفاده از مجموعه پایه6-311++G**بهینه شده­اند. انرژی برهمکنش بین مولکولی در همان سطح با خطای برهم نهی مجموعه پایه (BSSE) تصحیح ­شده است. افزون بر پارامترهای ساختاری و انرژی های پیوندی، ویژگی­های مکان شناختی چگالی بار الکترون با روش نظری کوانتوم اتم­ها در مولکول­ها (QTAIM) محاسبه ­شده است. افزون بر این، تجزیه و تحلیل اوربیتال پیوند طبیعی (NBO) برای به­ دست آوردن بینش دقیق ­تری در مورد ماهیت این برهمکنش ­ها به کار برده ­شده است. چندین همبستگی بین انرژی، پارامترهای ساختاری و مکان شناختی پیدا ­شده است. سرانجام، اثرهای برهمکنش ­ها بر روی داده های NMR برای بررسی بیش ­تر کمپلکس­های مطالعه شده، انجام ­شده است.

کلیدواژه‌ها

موضوعات


[1] Hobza P., Zaradnik R., “Intermolecular Complexes: The Role of Vander Waals Systems in Physical Chemistry and the Biodisciplines”, Elsevier, Amsterdam (1988).

[2] Geronimo I., Lee E.C., Singh N.J., Kim K.S., How Different are Electron-rich and Electron-Feficient π Interactions?, J. Chem. Theory Comput., 6: 1931-1934 (2010).

[3] Tarakeshwar P., Choi H.S., Kim K.S., Olefinic vs. Sromatic pi-H Interaction: a Theoretical Investigation of the Nature of Interaction of First-Row Hydrides with Ethene and Benzene, J. Am. Chem. Soc., 123: 3323–3331 (2001).

[4] Kim K.S., Tarakeshwar P., Lee J.Y., Molecular clusters of Tt-Systems: Theoretical Studies of Structures, Spectra and Origin of Interaction Energies, Chem. Rev., 100: 4145-4185 (2000).

[5] Meyer E.A., Castellano R.K. and Diederich F., Interactions with Aromatic Rings in Chemical and Biological Recognition, Angew. Chem. Int. Ed., 42: 1210-1250 (2003).

[6] Raju R.K., Bloom J.W.G., An Y., Wheeler S.E., Substituent Effects on Non-Covalent Interactions with Aromatic Rings: Insights from Computational Chemistry, Chem. Phys. Chem., 12: 3116-3130 (2011).

[7] Gal J.-F., Maria P.-C., Decouzon M., Mó O., Yáñez M., Abboud L.M., Lithium-Cation/π Complexes of Aromatic Systems. The Effect of Increasing the Number of Fused Rings, J. Am. Chem. Soc., 125: 10394-10401 (2003).

[8] Frontera A., Quiñonero D., Deyá P.M., Cation-π and Anion-π Interactions, WIREs Comput. Mol. Sci., 1: 440-459 (2011).

[9] Wheeler S.E., Houk K.N., Substituent Effects in Cation/π Interactions and Electrostatic Potentials above the Centers of Substituted Benzenes Are Due Primarily to Through-Space Effects of the Substituents, J. Am. Chem. Soc., 131: 3126-3127 (2009).

[10] Tang T.-H., Hu W.-J., Yan D.-Y., Cui Y.-P., A Quantum Chemical Study on Selected π-Tpe Hydrogen-Bonded Systems, Theochem 207: 319-326 (1990).

[11] Pakiari A.H., Farrokhnia M., Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-Delocalization, Iran. J. Chem. Chem. Eng. (IJCCE), 29: 197-210 (2010).

[12] Li J., Zhang R.-Q., Strong Orbital Interaction in a Weak CH-π Hydrogen Bonding System, Scientific Reports, 6: 22304 (2016).

[13] Nishio M., The CH/π Hydrogen Bond: Implication in Chemistry, Journal of Molecular Structure, 1018: 2–7 (2012).

[14] Zabardasti A., Kakanejadifard A., Ghasemian M., Jamshidi Z., Theoretical Study of Molecular Interactions of Sulfur Ylide with HF, HCN, and HN3, Structural Chemistry, 24: 271–277 (2013)

[15] Roohi H., Nowroozi A.R., Anjomshoa E., H-bonded Complexes of Uracil with Parent Nitrosamine: A Quantum Chemical Study, Comput. Theor. Chem., 965: 211-220 (2011).

[16] Engerer L.K., Hanusa T.P., Geometric Effects in Olefinic Cation–π Interactions with Alkali Metals: A Computational Study, J. Org. Chem., 76: 42–49 (2011).

[17] Roohi H., Bagheri S., Influence of Substitution on the Strength and Nature of CH...N Hydrogen Bond in XCCH...NH3 Complexes,Int. J. Quantum Chem., 111: 961–969 (2011).

[18] Foroutan-Nejad C., Badri Z., Marek R., Multi-Center Covalency: Revisiting the Nature of Anion-π Interactions, Phys. Chem. Chem. Phys., 17: 30670-30679 (2015).

[19] Badri Z., Foroutan-Nejad C., Kozelka J., Marek R., On the Non-Classical Contribution in  Lone-Pair-π Interaction: IQA Perspective, Phys. Chem. Chem. Phys., 17: 26183-26190 (2015).

[20] Desiraju G.R., Steiner T., “The Weak Hydrogen Bond in Structural Chemistry and Biology”, Oxford University Press, New York (1999).

[21] Pimentel G., McClellan A., “The Hydrogen Bond”, Freeman, San Francisco (1960).

[22] Pauling L., “The Nature of the Chemical Bond”, Cornell University Press, Ithaca, New  York (1960).

[23] Novoa J.J., Mota F., D’Oria E., “The nature of C–H...X Intermolecular Interactions in Molecular Crystals: a Theoretical Perspective”, in: Grabowski S.J. (Ed.), “Hydrogen Bonding – New Insights”, in: Leszczynski J. (Ed.), “Challenges and Advances in Computational Chemistry and Physics”, Springer (2006).

[24] Taylor R., Kennard O., Crystallographic Evidence for the Existence of CH...O, CH...N and CH...Cl Hydrogen Bonds, J. Am. Chem. Soc., 104: 5063–5070 (1982).

[25] Desiraju G.R., Hydrogen Bridges in Crystal Engineering:  Interactions without Borders, Acc. Chem. Res., 35: 565-573 (2002).

[26] Pinchas S., Infrared Absorption of the Aldehydic C–H Group, Anal. Chem., 27: 2-6 (1955).

[27] Trudeau G., Dumas J.M., Dupuis P., Guerin M., Sandorfy C., Intermolecular Interactions and  Anesthesia: Infrared Spectroscopic Studies, Topics Current Chem., 93: 91-125 (1980).

[28]  Hobza P., Havlas Z., Blue-Shifting Hydrogen Bonds, Chem. Rev., 100: 4253-4264 (2000).

[29] Satonaka H., Abe K., Hirota M., 13C NMR Spectra of Substituted 2-Thiophene carboxylic Acid Methyl Esters and MNDO Calculations, Bull. Chem. Soc. Jpn., 60: 953-961 (1987).

[30] Hobza P., N-H...F Improper Blue-Shifting H-Bond, Int. J. Quantum Chem., 90: 1071–1074 (2002).

[31] Li X., Liu L., Schlegel H.B., On the Physical Origin of Blue-Shifted Hydrogen Bonds, J. Am. Chem. Soc., 124: 9639-9647 (2002).

[32] Frisch M.J. et al., “GAUSSIAN 03 (Revision B.03)”, GAUSSIAN, Inc., Pittsburgh, PA (2003).

[33] Becke A.D., Density‐Functional Thermochemistry. III. The role of Exact Exchange, J. Chem.  Phys., 98: 5648–5652 (1993).

[34] Boys S.B., Bernardi F., The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors, Mol. Phys., 19: 553-566 (1970).

[35] Bader R.F.W. “Atoms in Molecules: A Quantum Theory”, Oxford University, New York (1990).

[36] Biegler König F., Schönbohm J., Update of the AIM2000-Program for Atoms in Molecules, J. Comput. Chem., 23: 1489–1494 (2002).

[37] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor–Acceptor Viewpoint, Chem. Rev., 88: 899–926 (1988).

[38] Glendening D.E., Reed A.E., Carpenter J.E., Weinhold F., “NBO”, Version 3.1. Gaussian, Inc, Pittsburgh (1996).

[39] Pulay P., Hinton J.F., Wolinski K., In: Tossel J.A. (Ed.), “Nuclear Magnetic Shieldings and Molecular Structure”, Kluwer, The Netherlands (1993).

[40] Hehre W.J., Radom L., Schleyer P.R., Pople J.A., “Ab Initio Molecular Orbital Theory”, Wiley, New York (1986).

[41] Raju Rajesh K., Bloom Jacob W.G., An Yi., Wheeler Steven E., Substituent Effects on Non-Covalent Interactions with Aromatic Rings: Insights from Computational Chemistry, Chem. Phys. Chem., 12(17): 3116–3130 (2011).

[42] Bader R.F.W., A Bond Path: a Universal Indicator of Bonded Interactions, J. Phys.  Chem. A., 102: 7314-7323 (1998).

[43] Cremer D., KraKa E., A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy,Angew. Chem., 23: 627-628 (1984).

[44]  Poater J., Duran M., Sola M., Silvi B., Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches, Chem. Rev., 105: 3911–3947 (2005).

[45]  Foroutan-Nejad C., Shahbazian S., Marek R., Toward a Consistent Interpretation of the QTAIM: Tortuous Link Between Chemical Bonds, Interactions, and Bond/Line Paths, Chem. Eur. J., 20: 10140-10152 (2014).