کاربرد کامپوزیت پلی‌اکریلیک اسید ـ بنتونیت برای جذب کروم از محلول های آبی

نوع مقاله: علمی-پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، صندوق پستی 83111 ـ 84156، اصفهان، ایران

چکیده

استفاده از کامپوزیت­ های پلیمر ـ رس به عنوان جاذب در آلودگی­ زدایی آب­های آلوده، به تازگی موضوع بسیاری از این پژوهش ­ها قرار گرفته است. در این پژوهش، کارایی کامپوزیت پلی­اکریلیک اسید ـ بنتونیت برای جذب کروم مورد بررسی قرار گرفت. رفتار جذبی کامپوزیت برای یون­های کروم از محلول­های آبی در شرایط گوناگون از جمله غلظت اولیه کروم (500 -5 میلی ­گرم بر لیتر) و زمان تماس (1440 -30 دقیقه) مطالعه شد. مدل­ های هم­دمای لانگمویر و فروندلیچ بر داده­های تعادلی آزمایش برازش داده شد که مدل لانگمویر داده­های تعادلی را بهتر توصیف نمود (994/0=2R). بیش­ترین ظرفیت پلی اکریلیک اسید ـ بنتونیت برای جذب یون­های کروم در دمای 25 درجه سلسیوس، mg/g 55/29 به ­دست آمد که بسیار بیش­ تر از مقدار آن برای بنتونیت طبیعی (mg/g 3/1) بود. کارایی جذب کروم توسط کامپوزیت در غلظت اولیه mg/L 50، بیش از 85% و در مدت زمان حدود 30 دقیقه به­دست آمد. سینتیک جذب به خوبی از مدل ­های شبه مرتبه اول و شبه مرتبه دوم تبعیت نمود. نتیجه ­ها نشان می­دهد که کامپوزیت پلی­اکریلیک اسید ـ بنتونیت پتانسیل زیادی برای جذب یون ­های کروم از محلول­های آبی دارا می ­باشد.

کلیدواژه‌ها

موضوعات


[1] Olanipekun O., Oyefusi A., Neelgundand G.M., Oki A., Synthesis and Characterization of Reduced Graphite Oxide-Polymer Composites and Their Application in Adsorption of Lead, Spectrochim, Acta part A, 149(5): 991-996 (2015).

[2] Shi Z., Zou P., Guo M., Yao S., Adsorption Equilibrium and Kinetics of Lead Ion onto Synthetic Ferrihydrites, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 25-30 (2015).

[3] Kara A., Demirbel E., Tekin N., Osman B., Besirli N., Magnetic Vinylphenylboronic Acid Microparticles for Cr(VI) Adsorption: Kinetic, Isotherm and Thermodynamic Studies, J. Hazard. Mater., 286(9): 612-623 (2014).

[4] Min G., Sun S., Zheng Z., Tang H., Sheng J., Zhu J., Liu X., Adsorption of Cr(VI) and Cu(II) by AlPO4 Modified Biosynthetic Schwertmannite, Appl. Surf. Sci., 356: 986–997 (2014).

[5] Polowczyk I., Urbano B.F., Rivas B.L., Bryjak M., Kabay N., Equilibrium and Kinetic Study of Chromium Sorption on Resins with Quaternary Ammonium and N-methyl-D-glucamine Groups, Chem. Eng. J., 284: 395–404, (2016).

[6] AL-Othman Z.A., Ali R., Naushad M., Hexavalent Chromium Removal from Aqueous Medium by Activated Carbon Prepared from Peanut Shell: Adsorption Kinetics, Equilibrium and Thermodynamic Studies, Chem. Eng. J., 184: 238–247 (2012).

[7] Dultz S., An J., Riebe B., Organic Cation Exchanged Montmorillonite and Vermiculite as Adsorbents for Cr(VI):Effect of Layer Charge on Adsorption Properties, Appl. Clay Sci., 67–68: 125–133 (2012).

[8] Hongbo X., Dan-dan L., Lu H., Na Liu., Guiling Ning., Adsorption of Copper(II) from an Wastewater Effluent of Electroplating Industry by Poly(ethyleneimine)-Functionalized Silica, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2): 73-81 (2015).

[9] Mthombeni N.H., Onyango M. S., Aoyi O., Adsorption of Hexavalent Chromium Onto Magnetic Natural Zeolite-Polymer Composite, J. Taiwan Inst. Chem. Eng., 50: 242–251 (2015).

[10] Li Z., Willms C.A., Kniola K., Removal of Anionic Contaminants Using Surfactant Modified Palygorskite and Sepiolite, Clays Clay Miner., 51: 445–451 (2003).

[11] Li Z., Bowman R.S., Retention of Inorganic Oxyanions by Organo-Kaolinite. Water Res., 35: 3771–3776 (2001).

[12] Majdan M., Maryuk O., Gładysz-Płaska A., Pikus S., Kwiatkowski R., Spectral Characteristics of the Bentonite Loaded with Benzyldimethyloctadecylammonium Chloride, Hexadecyltrimethylammonium Bromide and Dimethyldioctadecylammonium Bromide, J. Mol. Struct., 874: 101–107 (2008).

[13] Wang W., Zhou J., Achari G., Yu J., Cai W., Cr(VI) Removal from Aqueous Solutions by Hydrothermal Synthetic Layered Double Hydroxides: Adsorption Performance, Coexisting Anions and Regeneration Studies, Colloids Surf. A: Physicochem. Eng. Aspects, 457: 33–40 (2014).

[14] Pandey S., Mishra S.B., Organic–Inorganic Hybrid of Chitosan/Organoclaybionanocomposites for Hexavalent Chromium Uptake, J. Colloid Interface Sci., 361: 509–520 (2011).

[15] Fu R., Yang Y., Xu Z., Zhang X., Guo X., Bi D., The Removal of Chromium (VI) and Lead (II) from Groundwater Using Sepiolite-Supported Nanoscale Zero-Valent Iron (S-NZVI), Chemosphere, 138: 726–734 (2015).

[16] Mansria A., Benabadji K.I., Desbrières J., François J., Chromium Removal Using Modified Poly(4-vinylpyridinium) Bentonite Salts, Desalination, 245: 95–107 (2009).

[17] Heitz C., Binana W., Francois J., Biver C., Absorption and Desorption of Chromium Ions by Poly(acrylic acid) Gels, J. Appl. Polym. Sci., 72: 455–466 (1999).

[18] Zhang S., Shu X., Zhou Y., Huang L., Hua D., Highly Efficient Removal of Uranium (VI) from Aqueous Solutions using Poly(acrylic acid)-Functionalized Microspheres, Chem. Eng. J., 253: 55-62 (2014).

[19] Wisniewska M., Chibowski S., Urban T., Impact of Polyacrylamide with Different Contents of Carboxyl Groups on the Chromium (III) Oxide Adsorption Properties in Aqueous Solution, J. Hazard. Mater., 283: 815–823 (2015).

[20] Gładysz-Płaska A., Majdan M., Pikus S., Sternik D., Simultaneous Adsorption of Chromium(VI) and Phenol on Natural Red Clay Modified by HDTMA, Chem. Eng. J., 179: 140–150 (2012).

[21] Hu B., Luo H., Adsorption of Hexavalent Chromium Onto Montmorillonite Modified with Hydroxyaluminum and Cetyltrimethylammonium Bromide, Appl. Surf. Sci., 257: 769–775 (2010).

[22] Marjanovic V., Lazarevic S., Jankovic- Castvan I., Potkonjak B., Janackovi Ð., Petrovic R., Chromium (VI) Removal from Aqueous Solutions Using Mercaptosilane Functionalized Sepiolites, Chem. Eng. J., 166: 198–206 (2011).

[23] Beisebekov M.M., Serikpayeva S.B., Zhumagalieva Sh.N., Beisebekov M.K., Abilov Zh.A., Kosmella S., Koetz J., Interactions of Bentonite Clay in Composite Gels of Non-Ionic Polymers with Cationic Surfactants and Heavy Metal Ions, Colloid Polym. Sci., 293: 633–639 (2015).

[24] Liu P., Jiang L., Zhu L., Wang A., Novel Approach for Attapulgite/poly(acrylic acid) (ATP/PAA) Nanocompositemicrogels as Selective Adsorbent for Pb(II) Ion, React. Funct. Polym., 74: 72–80 (2014).

[25] Karimi M., Shojaei A., Nematollahzadeh A., Abdekhodaie M. J., Column Study of Cr (VI) Adsorption Onto Modified Silica–Polyacrylamide Microspheres Composite, Chem. Eng. J., 210: 280–288 (2012).

[26] Sölenera M., Tunalib S., Özcanc A.S., Özcanc A., Gedikbey T., Adsorption Characteristics of Lead(II) Ions Onto the Clay/poly(methoxyethyl)acrylamide (PMEA) Composite from Aqueous Solutions, Desalination, 223: 308–322 (2008).

[27] Unuabonah E.I., Taubert A., Clay–Polymer Nanocomposites (CPNs): Adsorbents of the Future for Water Treatment, Appl. Clay Sci., 99: 83-92 (2014).

[28] Kumar A.S.K., Kalidhasan S., Rajesh V., Rajesh N., Application of Cellulose-Clay Composite Biosorbent Toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater, Ind. Eng. Chem. Res., 51: 58–69 (2012).

[29] Chen D., Li W., Wu Y., Zhu Q., Lu Z., Du G., Preparation and Characterization of Chitosan/montmorillonite Magnetic Microspheres and Its Application for the Removal of Cr (VI), Chem. Eng. J.,  221: 8–15 (2013).

[30] Shirvani M., Rafiei H.R., Bakhtiary S., Azimzadeh B., Amani S., Equilibrium, Kinetic, and Thermodynamic Studies on Nickel Removal from Aqueous Solutions Using Ca-bentonite, Desalin. Water Treat., 54: 464-472 (2014).

[31] Rhoades J.W., In: C.A. Page, “Methods of Soil Analysis”, ASA Press, Madison, WI, USA, pp. 149–158 (1986).

[32] Fatimah I., Huda T., Preparation of Cetyltrimethylammonium Intercalated Indonesian Montmorillonite for Adsorption of Toluene, Appl. Clay Sci., 74: 115–120 (2013).

[33] Wang L., Wang A., Adsorption Properties of Congo Red from Aqueous Solution onto Surfactant-Modified Montmorillonite, J. Hazard. Mater., 160: 173–180 (2008).

[34] Mahmoud M.E., Osman M.M., Ahmed S.B., Abdel-Fattah T.M., Improved Adsorptive Removal of Cadmium from Water by Hybrid Chemically and Biologically Carbonaceous Sorbents, Chem. Eng. J., 175: 84–94 (2011).

[35] Nesic A.R., Velickovic S.J., Antonovic D.G., Characterization of Chitosan/Montmorillonite Membranes as Adsorbents for Bezactiv Orange V-3R dye, J. Hazard. Mater., 209–210: 256–263 (2012).

[36] Özcan A.S., Gök O., Özcan A., Adsorption of Lead(II) Ions Onto 8-Hydroxy Quinoline Immobilized Bentonite, J. Hazard. Mater., 161: 499–509 (2009).

[37] Tran N.H., Dennis G.R., Milev A.S., Kannangara G.S.K., Wilson M.A., Lamb R.N., Interactions of Sodium Montmorillonite with Poly(acrylic acid), J. Colloid Interface Sci., 290: 392–396 (2005).

[38] Zhang J., Yuan K., Wang Y., Gu S., Zhang S., Preparation and properties of polyacrylate/Bentonite Superabsorbent Hybrid via Intercalated Polymerization, Mater. Lett., 61: 316–320 (2007).

[39] Koyuncu H., Yıldız N., Salgın U., Köroglu F., Calımlı A., Adsorption of o-, m- and p-Nitrophenols Onto Organically Modified Bentonites, J. Hazard. Mater., 185: 1332–1339 (2011).

[40] Humelnicu D., Dinu M.V., Dragan E.S., Adsorption Characteristics of UO22+ and Th4+ Ions from Simulated Radioactive Solutions Onto Chitosan/Clinoptilolite Sorbents, J. Hazard. Mater., 185:447–455 (2011).

[41] Bajda T., Kłapyta Z., Adsorption of Chromate from Aqueous Solutions by HDTMA-Modified Clinoptilolite, Glauconite and Montmorillonite, Appl. Clay Sci., 86: 169–173 (2013).

[42] Babel S., Kurniawan T. A., Cr(VI) Removal from Synthetic Wastewater Using Coconut Shell Charcoal and Commercial Activated Carbon Modified with Oxidizing Agents and/or Chitosan, Chemosphere, 54: 951–967 (2004).

[43] Bhaumik M., Choi H.J., Seopela M.P., McCrindle R.I., Maity A., Highly Effective Removal of Toxic Cr(VI) from Wastewater Using Sulfuric Acid-Modified Avocado Seed, Ind. Eng. Chem. Res., 53: 1214−1224 (2014).

[44] Olad A., FarshiAzhar F., A Study on the Adsorption of Chromium (VI) from Aqueous Solutions on the Alginate-Montmorillonite/Polyaniline Nanocomposite, Desalin. Water Treat., (2013).

[45] Kumar A. S. K., Ramachandran R., Kalidhasan S., Rajesh V., Rajesh N., Potential application of Dodecylamine Modified Sodium Montmorillonite as an Effective Adsorbent for Hexavalent Chromium, Chem. Eng. J., 211–212: 396–405 (2012).

[46] Brum M.C., Capitaneo J.L., Oliveira J.F., Removal of Hexavalent Chromium from Water by Adsorption Onto Surfactant Modified Montmorillonite. Mine. Eng., 23: 270–272 (2010).

[47] Jinhua W., Xiang Z., Bing Z., Yafei Z., Rui Z., Jindun L., Rongfeng C., Rapid Adsorption of Cr (VI) on Modified Halloysite Nanotubes, Desalination, 259: 22–28 (2010).

[48] Jin X., Jiang M., Du J., Chen Z., Removal of Cr(VI) from Aqueous Solution by Surfactant-Modified Kaolinite, J. Ind. Eng. Chem., (2013).

[49] Wu Y., Luo H., Wang H., Wang C., Zhang J., Zhang Z., Adsorption of Hexavalent Chromium from Aqueous Solutions by Graphene Modified with Cetyltrimethylammonium Bromide, J. Colloid Interface Sci., 394: 183–191 (2013).

[50] Huang S., Chen D., Rapid Removal of Heavy Metal Cations and Anions from Aqueous Solutions by an Amino-Functionalized Magnetic Nano-Adsorbent, J. Hazard. Mater., 163: 174–179 (2009).

[51] Sharma Y.C., Srivastava V., Comparative Studies of Removal of Cr(VI) and Ni(II) from Aqueous Solutions by Magnetic Nanoparticles, J. Chem. Eng. Data, 56: 819–825 (2011).

[52] Mahapatra A., Mishra B.G., Hota, G., Studies on Electrospun Alumina Nanofibers for the Removal of Chromium(VI) and Fluoride Toxic Ions from an Aqueous System, Ind. Eng. Chem. Res., 52: 1554−1561 (2013).

[53] Albadarin A.B., Mangwandi C., Al-Muhtaseb A.H., Kinetic and Thermodynamics of Chromium Ions Adsorption Onto Low-Cost Dolomite Adsorbent, Chem. Eng. J., 179: 193–202 (2012).

[54] Wan Ngah W.S., Teong, L.C., Hanafiah M.A.K.M., Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review, Carbohydr. Polym., 83: 1446–1456 (2011).

[55] Abu-Zurayk R.A., Al Bakain R.Z., Hamadneh I., Al-Dujaili A.H., Adsorption of Pb(II), Cr(III) and Cr(VI) from Aqueous Solution by Surfactant-Modified Diatomaceous Earth: Equilibrium, Kinetic and Thermodynamic Modeling Studies, Int. J. Miner. Process., 140: 79–87 (2015).

[56] Boroumand Jazi M., Arshadi M., Amiri M.J., Gil A., Kinetic and Thermodynamic Investigations of Pb(II) and Cd(II) Adsorption on Nanoscale Organo-Functionalized SiO2-Al2O3, J. Colloid Interface Sci., 422: 16–24 (2014).