اندازه گیری کلوگزاسیلین به وسیله واکنش نورتابی شیمیایی افزایش یافته با نانوذرات Co3O4

نوع مقاله: علمی-پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم، دانشگاه مراغه، مراغه، ایران

چکیده

 



در این کار پژوهشی اثر کاتالیزوری نانوذره‌های Co3O4  برروی واکنش نورتابی شیمیایی لومینول ـ اکسیژن مولکولی انجام یافته در محیط قلیایی نشان داده شد. نانوذره‌های  Co3O4با روش ترسیب تند سنتز شدند و سپس 
با روش‌های میکروسکوپ الکترونی روبشی (SEM)، پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی عبوری (TEM) 
و طیف سنجی تبدیل فوریه فروسرخ (FTIR) مشخصه‌یابی شدند. نتیجه بررسی‌های اولیه نشان داد که 
داروی کلوگزاسیلین می‌تواند شدت واکنش نورتابی شیمیایی لومینول ـ اکسیژن مولکولی را افزایش دهد. بر اساس این یافته‌ها، روشی نوین، ساده و بر پایه نورتابی شیمیایی برای اندازه‌گیری داروی کلوگزاسیلین ارایه شد. 
محدوده خطی، ضریب همبستگی ، حد تشخیص و تکرارپذیری روش (RSD%) برای داروی کلوگزاسیلین به ترتیب عبارت بود از 4-10×0/7 - 5-10× 0/3 مولار 99/0 ، 5-10×9/2 مولار و2/2% بود و اندازه گیری هر نمونه حدود یک دقیقه طول می کشید. همچنین این روش پیشنهادی با موفقیت برای اندازه‌گیری کلوگزاسیلین در فرمولاسیون دارویی 
استفاده شد.

 [l1]با توجه به حد تشخیص و گستره خطی گزارش شده، به نظر می رسد ذکر کلمه حساس خوشبینانه است و بهتر است حذف شود




 [l2]دقت و سرعت روش را نیز گزارش نمایید




 [p3]




 [p4]دقت و سرعت روش به صورت زیر به چکیده اضافه شد
"محدوده خطی، ضریب همبستگی ، حد تشخیص و تکرارپذیری روش برای داروی کلوگزاسیلین به ترتیب عبارت بود از 4-10×0/7 - 5-10× 0/3 مولار، 9964/0 ، 5-10×9/2 مولار و 25/2% بود و اندازه گیری هر نمونه حدود یک دقیقه طول می کشید".
 




 [l5]این عدد با عددی که در جدول 1 گزارش شده است متفاوت است. لطفا اصلاح و یکسان سازی شود




 [p6]این عدد با توجه به عددی که در جدول 1 گزارش شده بود اصلاح و یکسان سازی شد.



 

کلیدواژه‌ها

موضوعات


[1] Sorouraddin, M.H. and M. Iranifam, A new chemiluminescence method for determination of EDTA in ophthalmic drugs. Chem Anal (Warsaw, Pol), 52(3): 481-490 (2007).

[2] Lara, F.J., Airado-Rodriguez D., Moreno-Gonzalez D., Huertas-Perez J.F., Garcia-Campana A.M., Applications of capillary electrophoresis with chemiluminescence detection in clinical, environmental and food analysis. A review. Anal Chim Acta. , 913: 22-40 (2016).

[3] Iranifam, M., Revisiting flow-chemiluminescence techniques: pharmaceutical analysis. Luminescence,28(6): 798–820 (2013).

[4] Iranifam, M., Analytical applications of chemiluminescence methods for cancer detection and therapy. TrAC, Trends Anal. Chem., 59(0): 156-183 (2014).

[6] Iranifam, M., Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TrAC, Trends Anal. Chem., 80: 387–415 (2016).

[7] Liu Z.Z., Zhao F.R., Gao S.D., Shao J.J., Chang H.Y. , The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection. Nanoscale Res. Lett., 11: 1-8 (2016).

[11]   Xie, J.,  Huang Y., Co3O4 nanoparticles-enhanced luminol chemiluminescence and its application in H2O2 and glucose detection. Anal Methods, 3(5): 1149-1155 (2011).

[12] Li X.H., Bai Y.F., Feng F., Zhang Z.J., The development of a novel chemiluminescent glucose sensor using hydrophilic Co3O4@SiO2 mesoporous nanoparticles. Anal Methods, 8(14): 2923-2928 (2016).

[16] Espinosa-Mansilla A., de la Pena A.M., Gomez D.G., Canada-Canada F., HPLC determination of ciprofloxacin, cloxacillin, and ibuprofen drugs in human urine samples. . J Sep Sci. , 29(13): 1969-1976 (2006).

[20] Drackova M., Navratilova P., Hadra L., Vorlova L., Hudcova L., Determination Residues of Penicillin G and Cloxacillin in Raw Cow Milk Using Fourier Transform Near Infrared Spectroscopy. Acta Vet Brno. 78(4): 685-690 (2009).

[22] Srivastava A.K., Madhavi S., Ramanujan R. , A novel method to synthesize cobalt oxide (Co3O4) nanowires from cobalt (Co) nanobowls. Phys. Status Solidi A.  207(4): 963-966 (2010).

[25] Barni F, Lewis S.W., Berti A., Miskelly G.M., Lago G. , Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta, 72(3): 896-913 (2007).

[26] Fan Y., Shi W., Zhang X., Huang Y., Mesoporous material-based manipulation of the enzyme-like activity of CoFe2O4 nanoparticles. J. Mater. Chem. A. , 2(8): 2482-2486 (2014).

[27] Liang S.X., Zhao L.X., Zhang B.T., Lin J.M.., Experimental studies on the chemiluminescence reaction mechanism of carbonate/bicarbonate and hydrogen peroxide in the presence of cobalt(II). J. Phys. Chem. A. 112(4): 618-623 (2008).

[28] Guan G., Yang L., Mei Q., Zhang K., Zhang Z., Han M-Y., Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides, Anal Chem., 84: 9492–9497 (2012).

[29] Ma L, Kang W, Xu X, Niu L, Shi H, Li S., Flow-injection chemiluminescence determination of penicillin antibiotics in drugs and human urine using luminol-Ag (III) complex system,      J. Anal. Chem. 67(3), 219–225 (2012).

[31] ارشدی، ستار ؛ دیده بان، خدیجه ؛ رستمی پایین افراکتی، معصومه، نانومخروط بور نیتریدی BNNC جایگزین شده با جایگاه فعال شبه کلروفیل: حسگری گزینش پذیر برای گاز اکسیژن، نشریه شیمی و مهندسی شیمی ایران، 32(1) 157 تا 143 (1396).

[32] قلیزاده، اعظم ؛ شاهرخیان، سعید ؛ ایرجی زاد، اعظم ؛ مهاجرزاده، شمس الدین ؛ وثوقی، منوچهر ، اندازه‌گیری گلوتامات با استفاده از حسگر زیستی بر پایه نانولوله‌های کربنی عمودی ، نشریه شیمی و مهندسی شیمی ایران، 32(4)33 تا 36 (1392).