کاربردهای الگوریتم ژنتیک در بهینه سازی فرایندهای مرتبط با مهندسی شیمی

نوع مقاله: مروری

نویسندگان

1 دانشکده مهندسی شیمی و مواد، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 بخش مهندسی شیمی، دانشگاه کاشان، کاشان، ایران

چکیده

در علم مهندسی، واژه طراحی از دیدگاه افراد دارای تغریف­ های متفاوتی بوده و انتخاب ورودی­ های مناسب برای مدل در قسمت­ های گوناگون طراحی و مدل­ سازی فرایندهای شیمیایی دارای جایگاه ویژ ه­ای می باشد. الگوریتم ژنتیک از جمله روش­هایی است که به ­کارگیری آن در کنار یک شبیه ساز ابزاری قدرتمند در بهینه سازی فرایندها است. با توجه به گسترش فراوان این روش در سال های اخیر و نتیجه­های چشمگیر آن در زمینه­ های گوناگون مهندسی شیمی، در این مقاله به چگونگی عملکرد روش یاد شده و کاربردهای آن در زمینه­ های گوناگون مرتبط با صنایع شیمیایی پرداخته می شود. در این مطالعه، میزان کارایی الگوریتم ژنتیک در بهینه سازی صنایع مرتبط با مهندسی شیمی مانند بهینه­ سازی راکتورهای همزن دار، طراحی کنترل کننده تجهیزات فرایندی، بهینه سازی پارامترهای فرایند غشایی، بهینه­سازی سامانه­ های گرمایی و... بررسی شده است. نتیجه ­ها بیانگر قابلیت بالای الگوریتم ژنتیک در بهینه­ سازی فرایندهای مرتبط با صنایع مهندسی شیمی ‌است. 

کلیدواژه‌ها

موضوعات


[1] Kaveh N.S., Ashrafizadeh S., Mohammadi F., Development of an artificial neural network model for prediction of cell voltage and current efficiency in a chlor-alkali membrane cell, chemical engineering research and design, 86(5): 461-472 (2008).

[2] Al-Dabbagh R., Neri F., Idris N., Baba M., Algorithm Design Issues in Adaptive Differential Evolution: Review and taxonomy,  (2018).

[3] Trivedi A., Srinivasan D., Biswas S., Reindl T., A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem, Information Sciences, 354(275-300 (2016).

[4] Coley D.A., An introduction to genetic algorithms for scientists and engineers, World Scientific Publishing Co Inc, (1999).

[5] Karr C., Freeman L.M., Industrial applications of genetic algorithms, CRC press, (1998).

[6] Syswerda G., A study of reproduction in generational and steady state genetic algorithms, Foundations of genetic algorithms, 2(94-101 (1991).

[7] Luss D., Optimum volume ratios for residence time in stirred tank reactor sequences, Chemical Engineering Science, 20(2): 171 (1965).

[8] Szépe S., Levenspiel O., Optimization of backmix reactors in series for a single reaction, Industrial & Engineering Chemistry Process Design and Development, 3(3): 214-217 (1964).

[9] Chang H., Hou W.-C., Optimization of membrane gas separation systems using genetic algorithm, Chem. Eng. Sci., 61(16): 5355-5368 (2006).

[10] Goldberg D.E., Genetic algorithms in search, optimization, and machine learning, 1989, Reading: Addison-Wesley,  (1989).

[11] Tomassini M., A survey of genetic algorithms, in:  Annual reviews of computational physics III, 1995, pp. 87-118 (1995).

[12] Charbonneau P., An introduction to genetic algorithms for numerical optimization, NCAR Technical Note, 74 (2002).

[13] Luke S., Spector L., A revised comparison of crossover and mutation in genetic programming, Genetic Programming, 98(208-213): 55 (1998).

[14] Davis L., Handbook of genetic algorithms,  (1991).

[15] Altınten A., Ketevanlioğlu F., Erdoğan S., Hapoğlu H., Alpbaz M., Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm, Chem. Eng. J., 138(1–3): 490-497 (2008).

[16] Wang P., Kwok D., Optimal design of PID process controllers based on genetic algorithms, Control Engineering Practice, 2(4): 641-648 (1994).

[17] Machado R., Bolzan A., Control of batch suspension polymerization reactor, Chemical Engineering Journal, 70(1): 1-8 (1998).

[18] Sarkar D., Modak J.M., Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables, Comput. Chem. Eng., 28(5): 789-798 (2004).

[19] Hwang S.T., Thorman J.M., The continuous membrane column, AIChE Journal, 26(4): 558-566 (1980).

[20] Qiu M.M., Hwang S.T., Kao Y.K., Economic evaluation of gas membrane separator designs, Industrial & engineering chemistry research, 28(11): 1670-1677 (1989).

[22] Qi R., Henson M., Optimization-based design of spiral-wound membrane systems for CO 2/CH 4 separations, Sep Purif Technol, 13(3): 209-225 (1998).

[23] Qi R., Henson M.A., Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming, Comput. Chem. Eng., 24(12): 2719-2737 (2000).

[24] Purnomo I., Alpay E., Membrane column optimisation for the bulk separation of air, Chemical engineering science, 55(18): 3599-3610 (2000).

[25] Lee T.-M., Oh H., Choung Y.-K., Oh S., Jeon M., Kim J.H., Nam S.H., Lee S., Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming, Desalination, 247(1–3): 285-294 (2009).

[27] Oh P., Ray A.K., Rangaiah G., Triple-objective optimization of an industrial hydrogen plant, Journal of chemical engineering of Japan, 34(11): 1341-1355 (2001).

[28] Rajesh J., Gupta S., Rangaiah G., Ray A., Multi-objective optimization of industrial hydrogen plants, Chemical Engineering Science, 56(3): 999-1010 (2001).

[29] Tarafder A., Lee B.C., Ray A.K., Rangaiah G., Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm, Industrial & engineering chemistry research, 44(1): 124-141 (2005).

[30] Arefi-Oskoui S., Khataee A., Vatanpour V., Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid, ACS Combinatorial Science, 19(7): 464-477 (2017).

[31] Selbaş R., Kızılkan Ö., Reppich M., A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view, Chemical Engineering and Processing: Process Intensification, 45(4): 268-275 (2006).

[32] Wildi‐Tremblay P., Gosselin L., Minimizing shell‐and‐tube heat exchanger cost with genetic algorithms and considering maintenance, International Journal of Energy Research, 31(9): 867-885 (2007).

[33] Babu B., Munawar S., Differential evolution strategies for optimal design of shell-and-tube heat exchangers, Chemical Engineering Science, 62(14): 3720-3739 (2007).

[34] Valdevit L., Pantano A., Stone H.A., Evans A.G., Optimal active cooling performance of metallic sandwich panels with prismatic cores, International Journal of Heat and Mass Transfer, 49(21): 3819-3830 (2006).

[35] Peng H., Ling X., Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms, Applied Thermal Engineering, 28(5–6): 642-650 (2008).

[36] Xie G., Sundén B., Wang Q., Optimization of compact heat exchangers by a genetic algorithm, Applied Thermal Engineering, 28(8): 895-906 (2008).

[37] John A.K., Krishnakumar K., Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm, International Journal for Simulation and Multidisciplinary Design Optimization, 8(A3 (2017).

[38] Ravagnani M., Da Silva A., Andrade A., Detailed equipment design in heat exchanger networks synthesis and optimisation, Applied Thermal Engineering, 23(2): 141-151 (2003).

[39] Pettersson F., Söderman J., Design of robust heat recovery systems in paper machines, Chemical Engineering and Processing: Process Intensification, 46(10): 910-917 (2007).

[40] Lu L., Cai W., Chai Y.S., Xie L., Global optimization for overall HVAC systems––Part I problem formulation and analysis, Energy Conversion and Management, 46(7–8): 999-1014 (2005).

[41] Lu L., Cai W., Soh Y.C., Xie L., Global optimization for overall HVAC systems––Part II problem solution and simulations, Energy Conversion and Management, 46(7–8): 1015-1028 (2005).

[42] Jin X., Ren H., Xiao X., Prediction-based online optimal control of outdoor air of multi-zone VAV air conditioning systems, Energy and Buildings, 37(9): 939-944 (2005).

[43] Huang W., Lam H., Using genetic algorithms to optimize controller parameters for HVAC systems, Energy and Buildings, 26(3): 277-282 (1997).

[44] Wang J., Wang Y., Performance improvement of VAV air conditioning system through feedforward compensation decoupling and genetic algorithm, Applied Thermal Engineering, 28(5–6): 566-574 (2008).

[45] Guillemin A., Morel N., An innovative lighting controller integrated in a self-adaptive building control system, Energy and buildings, 33(5): 477-487 (2001).

[46] Atashkari K., Nariman-Zadeh N., Pilechi A., Jamali A., Yao X., Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms, International Journal of Thermal Sciences, 44(11): 1061-1071 (2005).

[47] Ruano A.E., Crispim E.M., Conceiçao E.Z., Lúcio M.M.J., Prediction of building's temperature using neural networks models, Energy and Buildings, 38(6): 682-694 (2006).

[48] Kesgin U., Heperkan H., Simulation of thermodynamic systems using soft computing techniques, International Journal of Energy Research, 29(7): 581-611 (2005).

[49] Qin X., Chen L., Sun F., Wu C., Optimization for a steam turbine stage efficiency using a genetic algorithm, Applied Thermal Engineering, 23(18): 2307-2316 (2003).

[50] Sanaye S., Hajabdollahi H., Multi-objective optimization of rotary regenerator using genetic algorithm, International Journal of Thermal Sciences, 48(10): 1967-1977 (2009).

[51] Yu H., Fang H., Yao P., Yuan Y., A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration, Computers & Chemical Engineering, 24(8): 2023-2035 (2000).

[52] Kordabadi H., Jahanmiri A., Optimization of methanol synthesis reactor using genetic algorithms, Chemical Engineering Journal, 108(3): 249-255 (2005).

[53] Jang W.-H., Hahn J., Hall K.R., Genetic/quadratic search algorithm for plant economic optimizations using a process simulator, Comput. Chem. Eng., 30(2): 285-294 (2005).

[56] Montes G., Bartolome P., Udias A.L., The use of genetic algorithms in well placement optimization, in:  SPE Latin American and Caribbean petroleum engineering conference, Society of Petroleum Engineers,  (2001).

[58] John A.K., Krishnakumar K., Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm, International Journal for Simulation and Multidisciplinary Design Optimization, 8(A3 (2017).

[59] Bharathi C., Rekha D., Vijayakumar V., Genetic algorithm based demand side management for smart grid, Wireless Personal Communications, 93(2): 481-502 (2017).