مطالعه نظری برهمکنش بین بازدارنده های گلیکوزیل کومارین و آنزیم کربونیک آنهیدراز II و XII

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده فیزیک و شیمی، گروه شیمی، دانشگاه الزهرا، تهران، ایران

چکیده

کربونیک آنهیدراز (CA) آنزیم دارای فلز روی می­ باشد که واکنش برگشت ­پذیر تبدیل گاز کربن دی اکسید به بی­ کربنات را کاتالیز می­ کند. این آنزیم برای سامانه­ های زیستی و از جمله بدن انسان بسیار مهم است. در این پژوهش به بررسی مکانیسم عملکرد بازدارنده کومارین و برخی از مشتق­ های قندی کومارین‌ با آنزیم کربونیک آنهیدراز XII و II پرداخته شد. پایدارترین کنفورمر این بازدارنده­ ها برای محاسه انتخاب شد و برهم­کنش آن­ ها با این دو آنزیم بررسی شد. کلیه محاسبه­ ها با استفاده از نظریه تابعی چگالیDFT  در سطحB3LYP  با سری پایه6-31G*  و با استفاده از تابع مینسوتا M06 با سری پایه  6-31+G*انجام شده است. در ادامه کلیه متغیرهای ترمودینامیکی واکنش مانند ∆Hrxn°, ∆Srxn°  و   ∆Grxn° محاسبه شدند. نتیجه­ ها نشان می­ دهد که واکنش بین این خانواده از بازدارنده ها و آنزیم کربنیک آنهیدراز از نوع مستقیم و اتصالی نمی ­باشد بلکه آنزیم با اثر فضایی، غیرفعال می ­شود.

کلیدواژه‌ها

موضوعات


[1] Sahebjamee H., Yaghmaei P., Abdolmaleki P., Foroumadi A. R., Quantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32(2): 19-29 (2013).
[2] Supuran C.T., Carbonic Anhydrase Inhibition with Natural Products: Novel Chemotypes and Inhibition Mechanisms, Molecular Diversity, 15(2): 305-316 (2011).
[3] Supuran C.T., Carbonic Anhydrases: Novel Therapeutic Applications for Inhibitors and Activators, Nature Reviews Drug Discovery, 7(2): 168-181 (2008).
[4] Moya A., Tambutté S., Bertucci A., Tambutté E., Lotto S., Vullo D., Supuran C.T., Allemand D., Zoccola D., Carbonic Anhydrase in the Scleractinian Coral Stylophora Pistillata Characterization, Localization, and Role in Biomineralization, Journal of Biological Chemistry, 283(37): 25475-25484 (2008).
[5] Elleuche S., Pöggeler S., Carbonic Anhydrases in Fungi, Microbiology, 156(1): 23-29 (2010).
[6] Nishimori I., Onishi S., Takeuchi H., Supuran C.T., The α and β Classes Carbonic Anhydrases from Helicobacter Pylori as Novel Drug Targets, Current pharmaceutical design, 14(7): 622-630 (2008).
[7] Švastová E., Hulı́ková A., Rafajová M., Zat'ovičová M., Gibadulinová A., Casini A., Cecchi A., Scozzafava A., Supuran C.T., Pastorek J., Pastoreková S., Hypoxia Activates the Capacity of Tumor‐Associated Carbonic Anhydrase IX to Acidify Extracellular pH, FEBS Letters, 577(3): 439-445 (2004).
[8] Ebbesen P., Pettersen E.O., Gorr T.A., Jobst G., Williams K., Kieninger J., Wenger R.H., Pastorekova S., Dubois L., Lambin P., Wouters B.G., Taking Advantage of Tumor Cell Adaptations to Hypoxia for Developing New Tumor Markers and Treatment Strategies, Journal of Enzyme Inhibition and Medicinal Chemistry, 24(sup1): 1-39 (2009).
[9] Supuran C.T., Scozzafava A., Casini A., Carbonic Anhydrase Inhibitors, Medicinal Research Reviews, 23(2): 146-189 (2003).
[10] Supuran C.T., Carbonic Anhydrases-An Overview, Current Pharmaceutical Design, 14(7): 603-614 (2008).
[11] Erdemir F., Celepci D.B., Aktaş A., Taslimi P., Gök Y., Karabıyık H., Gülçin I., 2-Hydroxyethyl Substituted NHC Precursors: Synthesis, Characterization, Crystal Structure and Carbonic Anhydrase, Α-Glycosidase, Butyrylcholinesterase, and Acetylcholinesterase Inhibitory Properties, Journal of Molecular Structure, 1155: 797-806 (2018).
[13] Xu Y., Feng L., Jeffrey P.D., Shi Y., Morel F.M., Structure and Metal Exchange in the Cadmium Carbonic Anhydrase of Marine Diatoms, Nature, 452(7183): 56-61 (2008).
[15] Zimmerman S.A., Ferry J.G., Supuran C.T., Inhibition of the Archaeal β-Class (Cab) and γ-Class (Cam) Carbonic Anhydrases, Current Topics in Medicinal Chemistry, 7(9): 901-908 (2007).
[16] Monti S.M., Supuran C.T., De Simone G., Anticancer Carbonic Anhydrase Inhibitors: a Patent Review (2008–2013), Expert Opinion on Therapeutic Patents, 23(6): 737-749 (2013).
[18] Forsman C., Behravan G., Osterman A., Jonsson B.H., Production of Active Human Carbonic Anhydrase ll in E. Coli, Acta Chemica Scandinavica, 42: 314-318 (1988).
[20] Venters R.A., Farmer II B.T., Fierke C.A., Spicer L.D., Characterizing the Use of Perdeuteration in NMR Studies of Large Proteins: 13 C, 15 N and 1 H Assignments of Human Carbonic Anhydrase II, Journal of Molecular Biology, 264(5): 1101-1116 (1996).
[21] Supuran C.T., Carbonic Anhydrase Inhibitors: an Editorial, Expert Opinion on Therapeutic Patents, 23(6): 677-679 (2013).
[22] Supuran C.T., Maresca A., Gregáň F., Three New Aromatic Sulfonamide Inhibitors of Carbonic Anhydrases I, II, IV and XII, Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2): 289-293 (2013).
[23] Supuran C.T., Carbonic Anhydrase Inhibitors and Activators for Novel Therapeutic Applications, Future Medicinal Chemistry, 3(9): 1165-1180 (2011).
[24] Scozzafava A., Supuran C.T., Conway J., "Development of Sulfonamide Carbonic Anhydrase Inhibitors", CRC Press, Florida, (2004).
[25]  (a) Thiry A., Dogne J., Masereel B., Supuran C.T., Targeting Tumor-Associated Carbonic Anhydrase IX in Cancer Therapy, Trends in Pharmacological Sciences,  27(11): 566-573 (2006).
      (b) Kumar R., Bua S., Ram S., Del Prete S., Benzenesulfonamide Bearing Imidazothiadiazole and Thiazolotriazole Scaffolds as Potent Tumor Associated Human Carbonic Anhydrase IX
and XII Inhibitors
, Bioorganic & Medicinal Chemistry, 25(3): 1286-1293 (2017).
      (c) Chandak N., Ceruso M., Supuran C.T., Sharma P.K., Novel Sulfonamide Bearing Coumarin Scaffolds as Selective Inhibitors of Tumor Associated Carbonic Anhydrase Isoforms IX and XII, Bioorganic & Medicinal Chemistry, 24(13): 2882–2886 (2016).   
[26]  Ghiasi M., Kamalinahad S., Arabieh M., Zahedi M., Carbonic Anhydrase Inhibitors: a Quantum Mechanical Study of Interaction Between Some Antiepileptic Drugs with Active Center of Carbonic Anhydrase Enzyme, Computational and Theoretical Chemistry, 992: 59-69 (2012).
[28]   Ghiasi M., Oskouie A., Saeidian H., Dynamic Stereochemistry of Topiramate (Anticonvulsant Drug) in Solution: Theoretical Approaches and Experimental Validation, Carbohydrate Research, 348: 47-54 (2012).
[30] Bonneau A., Maresca A., Winum J.Y., Supuran C.T., Metronidazole-Coumarin Conjugates and 3-Cyano-7-Hydroxy-Coumarin Act as Isoform-Selective Carbonic Anhydrase Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2): 397-401 (2013).
[31] Touisni N., Maresca A., McDonald P.C., Lou Y., Scozzafava A., Dedhar S., Winum J.Y., Supuran C.T., Glycosyl Coumarin Carbonic Anhydrase IX and XII Inhibitors Strongly Attenuate the Growth of Primary Breast Tumors, Journal of Medicinal Chemistry, 54(24): 8271-8277 (2011).
[32] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P.,  Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J.,  Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian, Inc., Wallingford CT. (2009).
[34] Ghiasi M., Taheri M., Zahedi M., Thermodynamic Study of Proton Transfer in Carbonic Anhydrase/Activator Omplex:A Quantum Mechanical Approach, Computational and Theoretical Chemistry, 1022: 121-129 (2013).
[35] Ghiasi M., Kamalinahad S., Zahedi M., Complexation of Nanoscale Enzyme Inhibitor with Carbonic Anhydrase Active Center: A Quantum Mechanical Approach, Journal of Structural Chemistry, 55(8): 1574–1586 (2014).
[36]   Navarrete M., Rangel C., Corchado J.C., Espinosa-Garcia J., Trapping of the OH Radical by α-Tocopherol: A Theoretical Study, The Journal of Physical Chemistry A, 109(21): 4777-4784 (2005).
[37]   Chandra A.K., Uchimaru T., The OH Bond Dissociation Energies of Substituted Phenols and Proton Affinities of Substituted Phenoxide Ions: A DFT Study, International Journal of Molecular Sciences, 3(4): 407-422 (2002).
[38]   Zhang H.Y., Ji H.F., S-H Proton Dissociation Enthalpies of Thiophenolic Cation Radicals: A DFT Study, Journal of Molecular Structure: Theochem., 663(1-3): 167–174 (2003).
[39] Whittington D.A., Waheed A., Ulmasov B., Shah G.N., Grubb J.H., Sly W.S., Christianson D.W., Crystal Structure of the Dimeric Extracellular Domain of Human Carbonic Anhydrase XII, a Bitopic Membrane Protein Overexpressed in Certain Cancer Tumor Cells, Proceedings of the National Academy of Sciences, 98(17): 9545-9550 (2001).
[41] Tafazzoli M., Ghiasi M., Conformational Study of Anomeric Center in Some Carbohydrate Derivatives, Computational and Theoretical Chemistry, 814(1-3): 127-130 (2007).
[42] Barone V., Cossi M., Tomasi J., Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model, Journal of Computational Chemistry, 19(4): 404–417 (1998).