اصلاح طیفی نور با استفاده از رنگدانه فیکوسیانین به منظور افزایش رشد ریزجلبک سبز کلرلا

نوع مقاله : علمی-پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه بجنورد، بجنورد، ایران

2 گروه مهندسی شیمی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

چکیده

تمرکز این پژوهش اصلاح طیفی نور سفید توسط محلول فیکوسیانین به منظور افزایش رشد ریزجلبک کلرلا بود. بدین منظور، دو راکتور زیستی نوری  صفحه تخت دو لایه ساخته شد. در راکتور اصلی و در لایه جلویی آن، ریزجلبک کلرلا کشت داده شد و لایه دیگر با محلول فیکوسیانین پر شد. همچنین در راکتور زیستی نوری شاهد (بدون فیکوسیانین) به جای فیکوسیانین از آب یون زدایی شده برای پر کردن  لایه جلویی استفاده شد. راکتورهای زیستی نوری به مدت 14 روز زیر تابش لامپ سفید به شدتμ­mol photons/m2s 490، در دمای °C1±27 قرار گرفتند. نتیجه­ها نشان داد که، نرخ بهره وری زیست توده(P) و بیشینه نرخ رشد ویژه (µmax) نسبت به سامانه شاهد، به ترتیب 75% و 90% افزایش داشته است. همچنین محتوای کلروفیل a به میزان چشمگیری افزایش پیدا کرد. در واقع در پایان کشت میزان کلروفیل در راکتور اصلی حدود 93% بیش­تر از راکتور شاهد به دست آمد. ولی میزان لیپید سلولی زیر تابش نور اصلاح شده توسط فیکوسیانین کاهش پیدا کرد.

کلیدواژه‌ها

موضوعات


 [1] Chisti Y., Biodiesel from Microalgae. Biotechnology Advances, 25(3): 294-306 (2007).
 [2] de Godos, I., Blanco, S., García-Encina, P.A., Becares, E., Muñoz, R., Influence of Flue Gas Sparging on the Performance of High Rate Algae Ponds Treating Agro-Industrial Wastewaters, Journal of Hazardous Materials, 179(1): 1049-1054 (2010).
[3] Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., Perspectives on Microalgal CO2-Emission Mitigation Systems - A Review. Biotechnology Advances, 29(2): 189-198 (2011).
[4] Raes, E.J., Isdepsky, A., Muylaert, K., Borowitzka, M.A., Moheimani, N.R., Comparison of Growth of Tetraselmis in a Tubular Photobioreactor (Biocoil) and a Raceway Pond. Journal of Applied Phycology, 26(1): 247-255 (2014).
[7] Danesi, E.D.G., Rangel-Yagui, C.O., Carvalho, J.C.M., Sato, S., Effect of Reducing the Light Intensity on the Growth and Production of Chlorophyll by Spirulina Platensis. Biomass and Bioenergy, 26(4): 329-335 (2004).
[8] Matthijs, H.C., Balke, H., Van Hes, U.M., Kroon, B.M., Mur, L.R., Binot, R.A., Application of Light‐Emitting Diodes in Bioreactors: Flashing Light Effects and Energy Economy in Algal Culture (Chlorella Pyrenoidosa). Biotechnology and Bioengineering, 50(1): 98-107 (1996).
[9] Wang C.-Y., Fu C.-C., Liu Y.-C., Effects of Using Light-Emitting Diodes on the Cultivation of Spirulina Platensis. Biochemical Engineering Journal, 37(1): 21-25 (2007).
[10] Choul‐Gyun L., P.B. Ø., High‐Density Algal Photobioreactors Using LightEmitting Diodes. Biotechnology and Bioengineering, 44(10): 1161-1167 (1994).
[11] Kohen E., Santus R., Hirschberg G.G., “Photobiology". Academic Press, New York (1995).
[12] Klampaftis, E., Ross, D., McIntosh, K.R., Richards, B.S.,  Enhancing the Performance of Solar Cells via Luminescent Down-Shifting of the Incident Spectrum: A Review. Solar Energy Materials and Solar Cells, 93(8): 1182-1194 (2009).
[13] Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Švrček, V., Del Cañizo, C., Tobias, I., Modifying the Solar Spectrum to Enhance Silicon Solar Cell Efficiency—An Overview of Available Materials. Solar Energy Materials and Solar Cells, 91(4): 238-249 (2007).
[14] Amrei, H.D., Nasernejad, B., Ranjbar, R., Rastegar, S.,  Spectral Shifting of UV-A Wavelengths to Blue Light for Enhancing Growth Rate of Cyanobacteria. Journal of Applied Phycology, 26(3): 1493-1500 (2014).
[15] Delavari Amrei H, Ranjbar R., Influence of Fluorescent Coating at Rear and front Side of a Flat Panel Photobioreactor on Algal Growth. Journal of Applied Phycology, 30(2): 901-907 (2018).
[16] Amrei H.D., Ranjbar R., Rastegar S., Nasernejad B., Using Fluorescent Material for Enhancing Microalgae Growth Rate in Photobioreactors. Journal of Applied Phycology, 27(1): 67-74 (2015).
[17] Delavari Amrei, H., Nasernejad, B., Ranjbar, R., Rastegar, S., An Integrated Wavelength-Shifting Strategy for Enhancement of Microalgal Growth Rate in PMMA-and Polycarbonate-Based Photobioreactors. European Journal Phycology, 49(3): 324-331 (2014).
[18] Mohsenpour S.F., Willoughby N., Effect of CO2 Aeration on Cultivation of Microalgae in Luminescent Photobioreactors. Biomass and Bioenergy, 85: 168-177 (2016).
[19] Wondraczek, L., Batentschuk, M., Schmidt, M.A., Borchardt, R., Scheiner, S., Seemann, B., Schweizer, P., Brabec, C.J., Solar Spectral Conversion for Improving the Photosynthetic Activity in algae reactors. Nature Communications, 4: 2047 (2013).
[20] Wondraczek, L., Tyystjärvi, E., Méndez‐Ramos, J., Müller, F.A., Zhang, Q.,  Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis. Advanced Science, 2(12): 1500 (2015).
[21] Sung, M.G., Han, J.I., Lee, B., Chang, Y.K., Wavelength Shift Strategy to Enhance Lipid Productivity of Nannochloropsis Gaditana. Biotechnology for Biofuels, Biotechnology for Biofuels., 11(1): 70 (2018).
[22] Esfahani, R.H., Shafii, M.B., Roshandel, R., Energy Efficient Cultivation of Microalgae Using Phosphorescence Materials and Mirrors. Sustainable Cities and Societ., 41: 449-454 (2018).
[23] Zou, L., Gu, Z., Zhang, N., Zhang, Y., Fang, Z., Zhu, W., Zhong, X., Ultrafast Synthesis of Highly Luminescent Green- to Near Infrared-Emitting CdTe Nanocrystals in Aqueous Phase. Journal of Materials Chemistry, 18(24): 2807-2815 (2008).
[24] Bligh E.G., Dyer W.J., A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917 (1959).
[25] Seo, Y.H., Cho, C., Lee, J.Y., Han, J.I., Enhancement of Growth and Lipid Production from Microalgae using Fluorescent Paint Under the Solar Radiation. Bioresource Technology, 173: 193-197 (2014).
[26] Zhang, Y.M., Chen, H., He, C.L., Wang, Q.,  Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella Sorokiniana C3. PLoS ONE, 8(7): e69225 (2013).