واکنش افزایشی مایکل آمین ها در حضور4 - N ، N - دی متیل آمینوپیریدینیوم استات

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه صنعتی خاتم الانبیاء (ص) بهبهان، بهبهان، ایران

چکیده

در این پژوهش نخست در یک واکنش افزایشی آزا ـ مایکل نمونه اثر کاتالیستی تعدادی از مایع یونی پروتونی بررسی شد. نتیجه­ ها نشان داد 4-N ، N - دی متیل آمینوپیریدینیوم استات اثر کاتالیستی بهتری دارد. سپس، واکنش افزایشی مایکل آمین­ های گوناگون با پذیرنده­ های مایکل شامل n ـ بوتیل آکریلات، آکریلونیتریل  و متیل وینیل کتون در حضور این مایع یونی پروتونی در شرایط بدون حلال و در دمای  C° 100 مطالعه شد. واکنش آمین­ های نوع اول آروماتیک وآلیفاتیک با n ـ بوتیل آکریلات و آکریلونیتریل موفقیت آمیز بود و تنها فرآورده مونو N ـ آلکیله شده فراهم آمد. واکنش مورفولین به­ عنوان یک آمین آلیفاتیک نوع دوم با سه پذیرنده مایکل شامل متیل وینیل کتون، n ـ بوتیل آکریلات و آکریلونیتریل سریع انجام شد.

کلیدواژه‌ها

موضوعات


[1] Hallett J.P., Welton T., Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2, Chemical Reviews, 111(5): 3508-3576 (2011).
[2] Yoshizawa M., Xu W., Angell C.A., Ionic Liquids by Proton Transfer: Vapor Pressure, Conductivity, and the Relevance of Δpka from Aqueous Solutions, Journal of the American Chemical Society, 125(50): 15411-15419 (2003).
[3] Greaves T.L., Drummond C.J., Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications, Chemical Reviews, 115(20): 11379-11448 (2015).
[4] Amarasekara A. S., Acidic Ionic Liquids, Chemical Reviews, 116(10): 6133-6183 (2016).
[5] Sánchez-Roselló M., Aceña J.L., Simón-Fuentes A., del Pozo C., A General Overview of the Organocatalytic Intramolecular Aza-Michael Reaction, Chemical Society Reviews, 43(21): 7430-7453 (2014).
[6] Cardillo G., Tomasini C., Asymmetric Synthesis of β-Amino Acids and α-Substituted β-Amino Acids, Chemical Society Reviews, 25(2): 117-128 (1996).
[7] Rulev A.Y.E., Aza-Michael Reaction: Achievements and Prospects, Russian Chemical Reviews, 80(3): 197-218 (2011).
[8] Bull S.D., Davies S.G., Delgado-Ballester S., Fenton G., Kelly P.M., Smith A.D., The Asymmetric Synthesis of β-Haloaryl-β-amino Acid Derivatives, Synlett, 2000(09): 1257-1260 (2000).
[9] Firouzabadi H., Iranpoor N., Jafarpour M., Ghaderi A., ZrOCl2·8H2O as a Highly Efficient and the Moisture Tolerant Lewis Acid Catalyst for Michael Addition of Amines and Indoles
to α,β-Unsaturated Ketones under Solvent-Free Conditions
, Journal of Molecular Catalysis A: Chemical, 252(1-2): 150-155 (2006).
[10] Reboule I., Bezzenine-Lafollée S., Collin J., Gil R., Martin M., Samarium Diiodide Catalyzed Aza-Michael Reactions for the Formation of β-Amino Amides, Letters in Organic Chemistry, 7(2): 94-97 (2010).
[11] Kantam M.L., Neeraja V., Kavita B., Neelima B., Chaudhuri M.K., Hussain S., Cu(acac)2 Immobilized in Ionic Liquids: a Recoverable and Reusable Catalytic System for Aza-Michael Reactions, Advanced Synthesis & Catalysis, 347(6): 763-766 (2005).
[12] Kantam M.L., Neelima B., Reddy C.V., A Recyclable Protocol for Aza-Michael Addition of Amines to α,β-Unsaturated Compounds Using Cu-Al Hydrotalcite, Journal of Molecular Catalysis A: Chemical, 241(1-2): 147-150 (2005).
[13] Kim S., Kang S., Kim G., Lee Y., Copper-Catalyzed Aza-Michael Addition of Aromatic Amines or Aromatic Aza-Heterocycles to α,β-Unsaturated Olefins, The Journal of Organic Chemistry, 81(10): 4048-4057 (2016).
[14] Borah K.J., Phukan M., Borah R., Aza-Michael Addition of Amines to α,β-Unsaturated Compounds Using Molecular Iodine as Catalyst, Synthetic Communications, 40(19): 2830-2836 (2010).
[15] Azizi N., Baghi R., Ghafuri H., Bolourtchian M., Hashemi M., Silicon Tetrachloride Catalyzed Aza-Michael Addition of Amines to Conjugated Alkenes under Solvent-Free Conditions, Synlett, 2010(3): 379-382 (2010).
[16] Kang Q., Zhang Y., N-Heterocyclic Carbene-Catalyzed Aza-Michael Addition, Organic & Biomolecular Chemistry, 9(19): 6715-6720 (2011).
[17] Steunenberg P., Sijm M., Zuilhof H., Sanders J.P.M., Scott E.L., Franssen M.C.R., Lipase-Catalyzed Aza-Michael Reaction on Acrylate Derivatives, The Journal of Organic Chemistry, 78(8): 3802-3813 (2013).
[18] Bartoli G., Bosco M., Marcantoni E., Pertrini M., Sambri L., Torregiani E., Conjugate Addition of Amines to α,β-Enones Promoted by CeCl3.7H2O-NaI System Supported in Silica Gel, The Journal of Organic Chemistry, 66(26): 9052-9055 (2001).
[19] Reddy B.M., Patil M.K., Reddy B.T., An Efficient Protocol for Aza-Michael Addition Reactions Under Solvent-Free Condition Employing Sulfated Zirconia Catalyst, Catalysis Letters, 126(3-4): 413-418 (2008).
[20] Bartoli G., Bartolacci M., Giuliani A., Marcantoni E., Massimo M., Torregiani E., Improved Heteroatom Nucleophilic Addition to Electron-Poor Alkenes Promoted by CeCl3.7H2O/NaI System Supported on Alumina in Solvent-Free Conditions, The Journal of Organic Chemistry, 70(1): 169-174 (2005).
[22] Saidi M.R., Pourshojaei Y., Aryanasab F., Highly Efficient Michael Addition Reaction of Amines Catalyzed by Silica-Supported Aluminum Chloride, Synthetic Communications, 39(6): 1109-1119 (2009).
[23] Choudhary V.R., Dumbre D.K., Patil S.K., FeCl3/Montmorillonite K10 as an Efficient Catalyst for Solvent-Free Aza-Michael Reaction Between Amine and α,β-Unsaturated Compounds, RSC Advances, 2(18): 7061-7065 (2012).
[24] Dai L., Zhang Y., Dou Q., Wang X., Chen Y., Chemo/Regioselective Aza-Michael Additions of Amines to Conjugate Alkenes Catalyzed by Polystyrene-Supported AlCl3, Tetrahedron, 69(6): 1712-1716 (2013).
[25] Firouzabadi H., Iranpoor N., Farahi S., TiCl2(OTf)-SiO2: A Solid Stable Lewis acid Catalyst for Michael Addition of α-Aminophosphonates, Amines, Indoles and Pyrrole, Phosphorus, Sulfur and Silicon and the Related Elements, 193(5): 317-323 (2018).
[26] Xu L.W., Li J.W., Zhou S.L., Xia C.G., A Green, Ionic Liquid and Quaternary Ammonium Salt-Catalyzed Aza-Michael Reaction of α,β-Ethylenic Compounds with Amines in Water, New Journal of Chemistry, 28(2): 183-184 (2004).
[27] Ying A.G., Liu L., Wu G.F., Chen G., Chen X. Zh., Ye W.D., Aza-Michael Addition of Aliphatic or Aromatic Amines to α,β-Unsaturated Compounds Catalyzed by a DBU-Derived Ionic Liquid under Solvent-Free Conditions, Tetrahedron Letters, 50(14): 1653-1657 (2009).
[28] Roy S.R., Chakraborti A.K., Supramolecular Assemblies in Ionic Liquid Catalysis for Aza-Michael Reaction, Organic Letters, 12(17): 3866-3869 (2010).
[29] Ying A., Li Zh., Yang J., Liu Sh., Xu S., Yan H., Wu Ch., DABCO-Based Ionic Liquids: Recyclable Catalysts for Aza-Michael Addition of α,β-Unsaturated Amides under Solvent-Free Conditions, The Journal of Organic Chemistry, 79(14): 6510-6516 (2014).
[30] Srivastava N., Banik B.K., Bismuth Nitrate-Catalyzed Versatile Michael Reactions, The Journal of Organic Chemistry, 68(6): 2109-2114 (2003).
[31] Bhanushali M.J., Nandurkar N.S., Jagtap S.R., Bhanage B.M., Y(NO3)3.6H2O Catalyzed Aza-Michael Addition of Aromatic/Hetero-Aromatic Amines under Solvent-Free Conditions, Catalysis Communications, 9(6): 1189-1195 (2008).
[33] L. You, S. Feng, R. An, X. Wang, D. Bai, Silica Gel Accelerated Aza-Michael Addition of Amines to α,β-Unsaturated Amides, Tetrahedron Letters, 49(35): 5147-5149 (2008).
[34] Ai X., Wang X., Liu J.M., Ge Z.M., Cheng T.M., Li R.T., An Effective Aza-Michael Addition of Aromatic Amines to Electron-Deficient Alkenes in Alkaline Al2O3, Tetrahedron, 66(29): 5373-5377 (2010).
[35] Hou X., Hemit H., Yong J., Nie L., Aisa H.A., Mild and Efficient Procedure for Michael Addition of N-Heterocycles to α,β-Unsaturated Compounds Using Anhydrous K3PO4 as Catalyst, Synthetic Communications, 40(7): 973-979 (2010).
[36] Verma S., Mungse H.P., Kumar N., Choudhary Sh., Jain S.L., Sain B., Khatri O.P., Graphene Oxide: An Efficient and Reusable Carbocatalyst for Aza-Michael Addition of Amines to Activated Alkenes, Chemical Communications, 47(47): 12673-12675 (2011).
[37] Kalitaa P., Pegub Ch.D., Duttab P., Baruah P.K., Room Temperature Solvent-Free Aza-Michael Reactions over Nano-Cage Mesoporous Materials, Journal of Molecular Catalysis A: Chemical, 394: 145-150 (2014).
[39] Surendra K., Krishnaveni N.S., Sridhar R., Rao K.R., β-Cyclodextrin Promoted Aza-Michael Addition of Amines to Conjugated Alkenes in Water, Tetrahedron Letters, 47(13): 2125-2127 (2006).
[40] Chen X., She J., Shang Zh., Wu J., Zhang P., A Catalytic Method for Room-Temperature Michael Additions Using 12-Tungstophosphoric Acid as a Reusable Catalyst in Water, Synthesis, 2008(24): 3931-3936 (2008).
[41] Phippen Ch.B.W., Beattie J.K., McErlean Ch.S.P., “On-Water” Conjugate Additions of Anilines, Chemical Communications, 46(43): 8234-8236 (2010).
[42] Liu X., Lu M., Gu G., Lu T., Aza-Michael Reactions in Water Using Functionalized Ionic Liquids as the Recyclable Catalysts, Journal of the Iranian Chemical Society, 8(3): 775-781 (2011).
[43] Tang X.J., Yan Zh.L., Chen W.L., Gao Y.R., Mao Sh., Zhang Y.L., Wang Y.Q., Aza-Michael Reaction Promoted by Aqueous Sodium Carbonate Solution, Tetrahedron Letters, 54(21): 2669-2673 (2013).
[45] Kumar D., Gautam P., Mishra B.G., Varma R.S., Eco-Friendly Polyethylene Glycol Promoted Michael Addition Reactions of α,β-Unsaturated Carbonyl Compounds, Tetrahedron Letters, 49(49): 6974-6976 (2008).
[46] Nowrouzi N., Farahi S., Irajzadeh M., 4-(N,N-Dimethylamino) Pyridinium Acetate as a Recyclable Catalyst for the Synthesis of 5-Substituted-1H-Tetrazoles, Tetrahedron Letters, 56(5): 739-742 (2015).
[47] Farahi S., Nowrouzi N., Irajzadeh, M., Three-Component Synthesis of Isoxazolone Derivatives in the Presence of 4-(N,N-Dimethylamino) Pyridinium Acetate as a Protic Ionic Liquid, Iranian Journal of Science and Technology. Transaction A. Science, 42:1881-1887 (2018).