سنتز نانوکاتالیست –MgO3O2Ni-Co/Al به روش تلقیح برای تولید هیدروژن با استفاده از فرایند ریفورمینگ خشک متان

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

چکیده

در این پژوهش، نانوکاتالیست –MgO3O2Ni-Co/Al با دو نسبت (5، 5/0=) Al/Mg با استفاده از روش تلقیح سنتز و ویژگی­ های عملکردی آن ­ها در فرایند ریفورمینگ خشک متان مورد ارزیابی قرار گرفت. برای تعیین ویژگی­ های فیزیکی ـ شیمیایی نانوکاتالیست­ های سنتزی از آنالیزهایی XRD، BET، FESEM و FT-IR استفاده شد. در میان نمونه­ های سنتزی، نانوکاتالیست (5Al/Mg=)–MgO3O2Ni-Co/Al  بیش­ ترین میزان فعالیت را از خود نشان داد. علت این مشاهده ویژگی­ های دلخواه نمونه سنتزی تشخیص داده شد. آنالیز XRD نشان داد که نانوکاتالیست یاد شده با نسبت Al/Mg بیش ­تر دارای اندازه بلورهای NiO ریزتر و پراکنده می­ باشد. همچنین، نتیجه­ های آنالیز BET نشان داد که این نانوکاتالیست دارای بیش ­ترین مساحت سطح می­ باشد. بر اساس تصویرهای آنالیز FESEM، نانوکاتالیست (5Al/Mg=) –MgO3O2Ni-Co/Al دارای ذره ­های نانومتری با توزیع یکنواخت ­تری در سطح نمونه می­ باشد. آزمون پایداری نمونه برتر برای مدت 600 دقیقه بیانگر ثابت ماندن میزان تبدیل خوراک و بازده 2H و CO می­ باشد.

کلیدواژه‌ها

موضوعات


[1] Speder J., Zana A., Arenz M., The Colloidal Tool-Box Approach for Fuel Cell Catalysts: Systematic Study of Perfluorosulfonate-Ionomer Impregnation and Pt LoadingCatal. Today262: 82-89 (2016).

[2] Hosseini S.E., Wahid M.A., Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean DevelopmentRen. Sus. Energy Rev.57: 850-866 (2016).

[3] Han S.J., Song J.H., Bang Y., Yoo J., Park S., Kang K.H., Song I.K., Hydrogen Production by Steam Reforming of Ethanol over Mesoporous Cu-Ni-Al2O3-ZrO2 Xerogel CatalystsInt. J. Hydrogen Energy41(4): 2554-2563 (2016).

[4] Wei Q., Gao X., Liu G., Yang R., Zhang H., Yang G., Yoneyama Y., Tsubaki N., Facile One-Step Synthesis of Mesoporous Ni-Mg-Al Catalyst for Syngas Production using Coupled Methane Reforming ProcessFuel211: 1-10 (2018).

[5] Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N., Catalyst Design for Dry Reforming of Methane: Analysis ReviewRen. Sus. Energy Rev.82: 2570-2585 (2018).

[6] Gronchi P., Centola P., Rosso R.D., Dry Reforming of CH4 with Ni and Rh Metal Catalysts Supported on SiO2 and La203Appl. Catal., A152(1): 83-92 (1997).

[7] Akbari E., Alavi S.M., Rezaei M., CeO2 Promoted Ni-MgO-Al2O3 Nanocatalysts for Carbon Dioxide Reforming of MethaneJ. CO2 Util.24: 128-138 (2018).

[8] Portugal Jr U.L., Marques C.M.P., Araujo E.C.C., Morales E.V., Giotto M.V., Bueno J.M.C., CO2 Reforming of Methane over Zeolite-Y Supported Ruthenium CatalystsAppl. Catal., A193(1-2): 173-183 (2000).

[9] Shishido T., Sukenobu M., Morioka H., Furukawa R., Shirahase H., Takehira K., CO2 Reforming of CH4 over Ni/Mg-Al Oxide Catalysts Prepared by Solid Phase Crystallization Method from Mg-Al Hydrotalcite-Like PrecursorsCatal. Lett.73: 21-26 (2001).

[10] Jeong H., Kim K.I., Kim D., Song I.K., Effect of Promoters in the Methane Reforming with Carbon Dioxide to Synthesis Gas over Ni/HY Catalysts,  J. Mol. Catal. A: Chem.246(1-2): 43-48 (2006).

[11] Kaengsilalai A., Luengnaruemitchai A., Jitkarnka S., Wongkasemjit S., Potential of Ni Supported on KH Zeolite Catalysts for Carbon Dioxide Reforming of MethaneJ. Power Sources165(1): 347-352 (2007).

[12] Rahbar Shamskar F., Meshkani F., Rezaei M., Preparation and Characterization of Ultrasound-Assisted Co-precipitated Nanocrystalline La-, Ce-, Zr–Promoted Ni-Al2O3 Catalysts for Dry Reforming ReactionJ. CO2 Util.22: 124-134 (2017).

[13] Fakeeha A.H., Khan W.U., Al-Fatesh A.S., Abasaeed A.E., Stabilities of Zeolite Supported Ni Catalysts for Dry Reforming of Methane Ni Catalysts for Dry Reforming of MethaneChin. J. Catal.34(4): 764-768 (2013).

[14] Koo K.Y., Roh H.-S., Seo Y.T., Seo D.J., Yoon W.L., Park S.B., Coke Study on MgO-Promoted Ni/Al2O3 Catalyst in Combined H2O and COReforming of Methane for Gas to Liquid (GTL) ProcessAppl. Catal., A340: 183-190 (2008).

[15] Jin L., Xie T., Ma B., Li Y., Hu H., Preparation of Carbon-Ni/MgO-Al2O3 Composite Catalysts for CO2 Reforming of MethaneInt. J. Hydrogen Energy42(8): 5047-5055 (2017).

[16] Horváth É., Baán K., Varga E., Oszkó A., Vágó Á., Törő M., Erdőhelyi A., Dry Reforming of CH4 on Co/Al2O3 Catalysts Reduced at Different TemperaturesCatal. Today281: 233-240 (2017).

[17] Sharifi M., Haghighi M., Abdollahifar M., Sono-Dispersion of Bimetallic Ni-Co over Zeolite Y Used in Conversion of Greenhouse Gases CH4/CO2 to High Valued SyngasJ. Nat. Gas Sci. Eng.23: 547-558 (2015).

[18] Damyanova S., Pawelec B., Arishtirova K., Fierro J.L.G., Ni-Based Catalysts for Reforming of Methane with CO2Int. J. Hydrogen Energy37: 15-75 (2012).

[19] Nimwattanakul W., Luengnaruemitchai A., Jitkarnka S., Potential of Ni Supported on Clinoptilolite Catalysts for Carbon Dioxide Reforming of MethaneInt. J. Hydrogen Energy31: 93-100 (2006).

[20] Luengnaruemitchai A., Kaengsilalai A., Activity of Different Zeolite-Supported Ni Catalysts for Methane Reforming with Carbon Dioxide Chem. Eng. J.144(1): 96-102 (2008).

[21] Frontera P., Aloise A., Macario A., Crea F., Antonucci P., Giordano G., Nagy J., Zeolite-Supported Ni Catalyst for Methane Reforming with Carbon DioxideRes. Chem. Intermed.37: 267-279 (2011).

[22] Zou H., Chen S., Huang J., Zhao Z., Effect of Impregnation Sequence on the Catalytic Performance of NiMo Carbides for the Tri-reforming of MethaneInt. J. Hydrogen Energy42(32): 20401-20409 (2017).

[23] Luisetto I., Sarno C., De Felicis D., Basoli F., Battocchio C., Tuti S., Licoccia S., Di Bartolomeo E., Ni Supported on γ-Al2O3 Promoted by Ru for the Dry Reforming of Methane in Packed and Monolithic ReactorsFuel Process. Technol.158: 130-140 (2017).

[24] Estifaee P., Haghighi M., Babaluo A.A., Rahemi N., Fallah Jafari M., The Beneficial Use of Non-thermal Plasma in Synthesis of Ni/Al2O3-MgO Nanocatalyst Used in Hydrogen Production from Reforming of CH4/CO2 Greenhouse GasesJ. Power Sources257: 364-373 (2014).

[25] Sajjadi S.M., Haghighi M., Rahmani F., Syngas Production from CO2-Reforming of CH4 over Sol-Gel Synthesized Ni-Co/Al2O3-MgO-ZrO2 Nanocatalyst: Effect of ZrO2 Precursor on Catalyst Properties and PerformanceQuim. Nova38(4): 459-465 (2015).

[26] Sharifi M., Haghighi M., Rahmani F., Karimipour S., Syngas Production via Dry Reforming of CH4 over Co- and Cu-Promoted Ni/Al2O3-ZrO2 Nanocatalysts Synthesized via Sequential Impregnation and Sol-Gel MethodsJ. Nat. Gas Sci. Eng.21: 993-1004 (2014).

[27] Zhang J., Wang H., Dalai A.K., Development of Stable Bimetallic Catalysts for Carbon Dioxide Reforming of MethaneJ. Catal.249(2): 300-310 (2007).

[28] San-José-Alonso D., Juan-Juan J., Illán-Gómez M., Román-Martínez M., Ni, Co and Bimetallic Ni-Co Catalysts for the Dry Reforming of MethaneAppl. Catal., A371(1): 54-59 (2009).

[29] Pompeo F., Nichio N.N., González M.G., Montes M., Characterization of Ni/SiO2 and Ni/Li-SiO2 Catalysts for Methane Dry ReformingCatal. Today107-108: 856-862 (2005).

[30] Perego C., Villa P., Catalyst Preparation MethodsCatal. Today34: 281-305 (1997).

[31] Gac W., Denis A., Borowiecki T., Kępiński L., Methane Decomposition over Ni-MgO-Al2O3 CatalystsAppl. Catal., A357(2): 236-243 (2009).

[32] Abdollahifar M., Haghighi M., Babaluo A.A., Syngas Production via Dry Reforming of Methane over Ni/Al2O3-MgO Nanocatalyst Synthesized Using Ultrasound EnergyJ. Ind. Eng. Chem.20(4): 1845-1851 (2014).

[33] Polovka M., Polovková J., Vizárová K., Kirschnerová S., Bieliková L., Vrška M., The Application of FTIR Spectroscopy on Characterization of Paper Samples, Modified by Bookkeeper Process, Vib. Spectrosc41(1): 112-117 (2006).

[34] de Sousa F.F., de Sousa H.S., Oliveira A.C., Junior M.C., Ayala A.P., Barros E.B., Viana B.C., Oliveira A.C., Nanostructured Ni-Containing Spinel Oxides for the Dry Reforming of Methane: Effect of the Presence of Cobalt and Nickel on the Deactivation Behaviour of CatalystsInt. J. Hydrogen Energy37(4): 3201-3212 (2012).

[35] Estifaee P., Haghighi M., Mohammadi N., Rahmani F., CO Oxidation over Sonochemically Synthesized Pd-Cu/Al2O3 Nanocatalyst Used in Hydrogen Purification: Effect of Pd Loading and Ultrasound Irradiation TimeUltrason. Sonochem.21(3): 1155-1165 (2014).