سنتز، شناسایی و کاربرد مونت موریلونیت اصلاح شده با تیتانیم دی اکسید در حذف یون سرب (II) از پساب صنعتی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه محیط زیست، واحد بندرعباس، دانشگاه آزاد اسلامی ، بندرعباس، ایران

3 سازمان ملی استاندارد، هرمزگان، بندرعباس، ایران

چکیده

انتشار فلزات سنگین در محیط زیست به سبب صنعتی شـدن و گـسترش شـهرنـشینی، مـشکلات بزرگی در سراسر جهان به همراه داشته است و به دلیل خصوصیات سرطان زایی و تجمـع بیولوژیکی آن ها سبب نگرانی های بسیار جدی شده است. بنابراین جذب فلزات سنگین از پساب های صنعتی یکی از مباحث مهم زیست محیطی محسوب می شود. سرب یکی از چهار فلزی است که بیشترین عوارض را بر روی سلامتی انسان دارد. تاکنون روش های مختلفی برای جذب سرب مورد توجه قرارگرفته است کـه اسـتفاده از جـاذب های زیست سازگار از جمله این روش ها به شمار می رود. مونت موریلونیت (MMT) که یک کانی رسی با خواص فیزیکی و شیمیایی منحصر به فرد است از جمله جاذب های زیست سازگار محسوب می شود. در این مطالعه پس از اصلاح سطح مونت موریلونیت توسط تیتانیم دی اکسید (TiO2/MMT) توسط روش های FT-IR، XRD، FE-SEM و BET شناسایی شد و سپس کاربرد آن را به عنوان نانوجاذب برای حذف یون سرب (II) تحت شرایط مختلف (مدت زمان تماس، مقدار نانوجاذب، غلظت محلول یون سرب (II) و pH) مورد بررسی قرار گرفت. نتایج به دست آمده نشان داد که کارایی این نانوجاذب به حدی است که حتی با مقدار10 میلی گرم طی 5 دقیقه در pH خنثی قادر است مقدار قابل ملاحظه ای از یون سرب (II) با غلظت 50 میلی گرم بر لیتر را با بازده حدود 90 درصد حذف نماید. علاوه بر این، نتایج آزمایشگاهی نشان داد که ظرفیت جذب یون سرب (II) توسط نانوجاذب اصلاح شده بعد از انجام 12بار فرآیند جذب، تنها در حدود 8 الی 10 درصد افت می کند.

کلیدواژه‌ها

موضوعات


[1] Goel P., "Water Pollution: Causes, Effects and Control", New Age International (2006).
[2] Postel S., "The Last Oasis: Facing Water Scarcity", Routledge (2014).
[3] Madani K., AghaKouchak A., Mirchi A., Iran’s Socio-Economic Drought: Challenges of a Water-Bankrupt Nation, Iranian Studies, 49(6): 997-1016 (2016).
[4] Salgot M., Folch M., Wastewater Treatment and Water Reuse, Curr. Opin. Environ. Sci. Health, 2: 64-74 (2018).
[5] Baysal A., Ozbek N., Akman S., "Determination of Trace Metals in Waste Water and Their Removal Processes, Waste-Water Treatment Technologies and Recent Analytical Developments, ed. FSG Einschlag, L. Carlos, 145-171 (2013).
[6] Helaluddin A., Khalid R.S., Alaama M., Abbas S.A., Main Analytical Techniques Used for Elemental Analysis in Various Matrices, Trop. J. Pharm. Res. 15(2): 427-434 (2016).
[8] Nagajyoti P.C., Lee K.D., Sreekanth T., Heavy Metals, Occurrence and Toxicity for Plants: A Review, Environ. Chem. Lett. 8(3): 199-216 (2010).
[10] Kim J.J., Kim Y.S., Kumar V., Heavy Metal Toxicity: An Update of Chelating Therapeutic Strategies, J. Trace Elem. Med. Biol. 54: 226-231 (2019).
[12] Gidlow D., Lead Toxicity, Occup. Med. 54(2): 76-81 (2004).
[13] Papanikolaou N.C., Hatzidaki E.G., Belivanis S., Tzanakakis G.N., Tsatsakis A.M., Lead Toxicity Update. A Brief Review, Med. Sci. Monit. 11(10): RA329-RA336 (2005).
[14] Fu F., Wang Q., Removal of Heavy Metal Ions from Wastewaters: A Review, J. Environ. Manage. 92 (3): 407-418 (2011).
[15] Bhattacharyya K.G., Gupta S.S., Kaolinite and Montmorillonite as Adsorbents for Fe (III), Co (II) and Ni (II) in Aqueous Medium, Appl. Clay Sci. 41(1-2): 1-9 (2008).
[17] Larraza I., Lopez-Gonzalez M., Corrales T., Marcelo G., Hybrid Materials: Magnetite–Polyethylenimine–Montmorillonite, as Magnetic Adsorbents for Cr(VI) Water Treatment, J. Colloid Interface Sci. 385(1): 24-33 (2012).
[19] Ramesh A., Hasegawa H., Maki T., Ueda K., Adsorption of Inorganic and Organic Arsenic from Aqueous Solutions by Polymeric Al/Fe Modified Montmorillonite, Sep. Purif. Technol. 56(1): 90-100 (2007).
[20] Wang C.C., Juang, L.C., Hsu T.C, Lee C.K., Lee J.F., Huang F.C., Adsorption of Basic Dyes onto Montmorillonite, J. Colloid Interface Sci. 273(1): 80-86 (2004).
[21] Zhu R., Chen Q., Zhou Q., Xi Y., Zhu J., He H., Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review, Appl. Clay Sci. 123: 239-258 (2016).
[22] Lin S.-H., Juang R.-S., Heavy Metal Removal from Water by Sorption Using Surfactant-Modified Montmorillonite, Journal of hazardous materials, 92(3): 315-326 (2002).
[25] Daković A., Matijašević S., Rottinghaus G.E., Ledoux D.R., Butkeraitis P., Sekulić Ž., Aflatoxin B1 Adsorption by Natural and Copper Modified Montmorillonite, Colloids Surf., B,  66(1): 20-25 (2008).
[26] Padervand M., Salari H., Ahmadvand S., Gholami M.R., Removal of an Organic Pollutant from Waste Water by Photocatalytic Behavior of AgX/TiO2 Loaded on Mordenite Nanocrystals, Res. Chem. Intermed. 38(8): 1975-1985 (2012).
[27] Padervand M., Tasviri M., Gholami M.R., Effective Photocatalytic Degradation of an Azo Dye Over Nanosized Ag/AgBr-Modified TiO2 Loaded on Zeolite, Chem. Pap. 65(3): 280-288 (2011).
[28] Padervand M., Elahifard M.R., Meidanshahi R.V., Ghasemi S., Haghighi S., Gholami M.R., Investigation of the Antibacterial and Photocatalytic Properties of the Zeolitic Nanosized AgBr/TiO2 Composites, Mater. Sci. Semicond. Process. 15(1): 73-79 (2012).
[29] Li Y., Liu J.R., Jia S.Y., Guo J.W., Zhuo J., Na P., TiO2 Pillared Montmorillonite as a Photoactive Adsorbent of Arsenic Under UV Irradiation, Chem. Eng. J. 191: 66-74 (2012).
[32] Wang Q., Peng L., Li G., Zhang P., Li D., Huang F., Wei Q., Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes, Int. J. Mol. Sci. 14(6): 12520-12532 (2013).
[33] Wu T.-S., Wang K.-X., Li G.-D., Sun S.-Y., Sun J., Chen J.-S., Montmorillonite-Supported Ag/TiO2 Nanoparticles: an Efficient Visible-Light Bacteria Photodegradation Material, ACS Appl. Mater. Interfaces 2(2): 544-550 (2010).
[34] Jing C., Meng X., Calvache E., Jiang G., Remediation of Organic and Inorganic Arsenic Contaminated Groundwater Using a Nanocrystalline TiO2-Based Adsorbent, Environ. Pollut. 157(8-9): 2514-2519 (2009).
[35] Kim H.-T., Lee C.-H., Shul Y.-G., Moon J.-K., Lee E.-H., Evaluation of PAN–TiO2 Composite Adsorbent for Removal of Pb (II) Ion in Aqueous Solution, Sep. Sci. Technol. 38(3): 695-713 (2003).
[36] Abbasizadeh S., Keshtkar A.R., Mousavian M.A., Sorption of Heavy Metal Ions from Aqueous Solution by a Novel Cast PVA/TiO2 Nanohybrid Adsorbent Functionalized with Amine Groups, J. Ind. Eng. Chem. 20(4): 1656-1664 (2014).
[37] Hussain A.S., Tatarchuk B.J., Mechanism of Hydrocarbon Fuel Desulfurization Using Ag/TiO2–Al2O3 Adsorbent, Fuel Process. Technol. 126: 233-242 (2014).
[38] Li J., Feng J., Yan W., Synthesis of Polypyrrole-Modified TiO2 Composite Adsorbent and Its Adsorption Performance on Acid Red G, J. Appl. Polym. Sci. 128(5): 3231-3239 (2013).
[39] Christophoridis C., Kosma A., Evgenakis E., Bourliva A., Fytianos K., Determination of Heavy Metals and Health Risk Assessment of Cheese Products Consumed in Greece, J. Food Compos. Anal. 82: In Press (2019).
[44] Abd El-Samad M., Hanafi H.A., Analysis of Toxic Heavy Metals in Cigarettes by Instrumental Neutron Activation Analysis, J. Taibah Univ. Sci. 11 (5): 822-829 (2017).
[45] Ashraf A., Saion E., Gharibshahi E., Yap C.K., Kamari H.M., Elias M.S., Rahman S.A., Distribution of Heavy Metals in core Marine Sediments of Coastal East Malaysia by Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Spectroscopy, Appl. Radiat. Isot. 132: 222-231 (2018).
[46] Kamilari E., Farsalinos K., Poulas K., Kontoyannis C.G., Orkoula M.G., Detection and Quantitative Determination of Heavy Metals in Electronic Cigarette Refill Liquids Using Total Reflection X-ray Fluorescence Spectrometry, Food Chem. Toxicol. 116, 233-237 (2018).
[48] Zhao D., Guo X., Wang T., Alvarez N., Shanov V.N., Heineman W.R., Simultaneous Detection of Heavy Metals by Anodic Stripping Voltammetry Using Carbon Nanotube Thread, Electroanalysis, 26(3): 488-496 (2014).
[49] Kakavandi B., Kalantary R.R., Jafari A.J., Nasseri S., Ameri A., Esrafili A., Azari A., Pb(II) Adsorption Onto a Magnetic Composite of Activated Carbon and Superparamagnetic Fe3O4 Nanoparticles: Experimental and Modeling Study, CLEAN–Soil, Air, Water 43(8): 1157-1166 (2015).
[50] Tao Y., Ye L., Pan J., Wang Y., Tang B., Removal of Pb (II) from Aqueous Solution on Chitosan/TiO2 Hybrid Film, J. Hazard. Mater. 161(2-3): 718-722 (2009).
[51] Tran H.V., Dai Tran L., Nguyen T.N., Preparation of Chitosan/Magnetite Composite Beads and Their Application for Removal of Pb (II) and Ni (II) from Aqueous Solution, Mater. Sci. Eng. C 30(2): 304-310 (2010).
[52] Futalan C.M., Kan C.-C., Dalida M.L., Hsien K.-J., Pascua C., Wan M.-W., Comparative and Competitive Adsorption of Copper, Lead, and Nickel Using Chitosan Immobilized on Bentonite, Carbohydr. Polym. 83(2): 528-536 (2011).
[53] Idris A., Ismail N.S.M., Hassan N., Misran E., Ngomsik A.-F., Synthesis of Magnetic Alginate Beads Based on Maghemite Nanoparticles for Pb (II) Removal in Aqueous Solution, J. Ind. Eng. Chem. 18(5): 1582-1589 (2012).
[54] Fan L., Luo C., Sun M., Li X., Qiu H., Highly Selective Adsorption of lead Ions by Water-Dispersible Magnetic Chitosan/Graphene Oxide Composites, Colloids Surf., B, 103: 523-529 (2013).
[55] Heidari A., Younesi H., Mehraban Z., Heikkinen H., Selective Adsorption of Pb (II), Cd (II), and Ni (II) Ions from Aqueous Solution Using Chitosan–MAA Nanoparticles, Int. J. Biol. Macromol. 61: 251-263 (2013).
[56] Xu P., Zeng G., Huang D., Hu S., Feng C., Lai C., Zhao M., Huang C., Li N., Wei Z., Synthesis of Iron Oxide Nanoparticles and Their Application in Phanerochaete Chrysosporium Immobilization for Pb (II) Removal, Colloids Surf., A 419: 147-155 (2013).
[57] Wang Y., Wang X., Wang X., Liu M., Wu Z., Yang L., Xia S., Zhao J., Adsorption of Pb(II) from Aqueous Solution to Ni-Doped Bamboo Charcoal, J. Ind. Eng. Chem. 19 (1): 353-359 (2013).
[58] Karthik R., Meenakshi S., Removal of Pb(II) and Cd(II) Ions from Aqueous Solution Using Polyaniline Grafted Chitosan, Chem. Eng. J. 263: 168-177 (2015).
[60] Ray P.Z., Shipley H.J., Inorganic Nano-Adsorbents for the Removal of Heavy Metals and Arsenic: A Review, RSC Adv. 5(38): 29885-29907 (2015).