ساخت غشای نانومتخلخل پلی(وینیلیدن فلوئوراید) و بررسی عملکرد آن

نوع مقاله: علمی-پژوهشی

نویسندگان

1 کاشان، دانشگاه کاشان، پژوهشکده علوم و فناوری نانو

2 کاشان، دانشگاه کاشان، دانشکده معماری و هنر، گروه فرش

چکیده

در این پژوهش، غشای نانومتخلخل پلی(وینیلیدن فلوئوراید) (PVDF) از روش ترغیب جدایی فازی به وسیله غیرحلال در دمای محلول ‌سازی °C75 و دمای حمام انعقاد °C20 تهیه شد. مکانیسم تشکیل غشای PVDF(ریخت ‌شناسی) و عملکرد آن (شار آب خالص و بازده پس‌زنی 7 ترکیب زیستی) نیز مورد بررسی قرار گرفت.در تشکیل این غشا، جدایی بینودالی مکانیسم غالب بوده و بلورینگی و جدایی اسپینودالی سبب تشکیل ساختار گرانولی در سطح غشا و دیواره درشت‌ تهی‌ جاها شدند. اندازه حفره ‌های غشا به ‌وسیله روش بارت ـ جوینر ـ هالندا (BJH) اندازه ‌گیری شد. این روش نشان داد که اندازه حفره ‌های این غشا در مقیاس نانو است (یعنی 27-18 نانومتر). شار آب خالص و پس‌زنی ترکیب زیستی دکستران آبی در فشار 200 کیلوپاسکال برای این غشای PVDFبه ترتیب L/m2h 60/23 و %5 /92 بودند که به وسیله دستگاه فراتصفیه مورد اندازه‌ گیری قرار گرفتند.

کلیدواژه‌ها

موضوعات


 

[1] Tan X., Tan S.P., Teo W.K., Li K., Polyvinylidene Fluoride (PVDF) Hollow Fibre Membranes for Ammonia Removal from Water, J. Membr. Sci., 271, p. 59 (2006).

[2] Khayet M., Matsuura T., Preparation and Characterization of Polyvinylidene Fluoride Membranes for Membrane Distillation, Ind. Eng. Chem. Res., 40, p. 5710 (2001).

[3] Han L.F., Xu Z.L., Yu L.Y., Wei Y.M., Cao Y., Performance of PVDF/Multi-Nanoparticles Composite Hollow Fibre Ultrafiltration Membranes, Iran. Polym. J., 19, p. 553 (2010).

[4] Gao K., Hu X., Dai C., Yi T., Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells, Mater. Sci. Eng. B, 131, p. 100 (2006).

[5] Cheng L.P., Lin D.J., Shih C.H., Dwan A.H., Gryte C.C., PVDF Membrane Formation by Diffusion-Induced Phase Separation-Morphology Prediction Based on Phase Behavior and Mass Transfer Modeling, J. Polym. Sci. B: Polym. Phys., 37, p. 2079 (1999).

[6] Lin D.J., Chang C.L., Chang C.L., Chen T.C., Cheng L.P., Fine Structure of Poly(vinylidene fluoride) Membranes Prepared by Phase Inversion from a Water/N-Methyl-2-pyrollidone/Poly(vinylidene fluoride) System, J. Polym. Sci. B: Polym. Phys., 42, p. 830 (2004).

[7] Lin D.J., Chang H.H., Chen T.C., Lee Y.C., Cheng L.P., Formation of Porous poly(vinylidene Fluoride) Membranes with Symmetric or Asymmetric Morphology by Immersion Precipitation in the Water/TEP/PVDF System, Eur. Polym. J., 42, p. 1581 (2006).

[8] Strathmann H., Kock K., The Formation Mechanism of Phase Inversion Membranes, Desalination, 21, p. 241 (1977).

[9] Stropnik, Č., Kaiser, V., Polymeric Membranes Preparation by Wet Phase Separation: Mechanisms and Elementary Processes, Desalination, 145, p. 1 (2002).

[10] Mulder, M., "Basic Principles of Membrane Technology",Kluwer Academic Publishers, Dordrecht (1997).

[11] Barzin J., Madaeni S.S., Mirzadeh H., Effect of Preparation Conditions on Morphology and Performance of Hemodialysis Membranes Prepared from Polyether Sulphone and Polyvinylpyrrolidone, Iran. Polym. J., 14, p. 353 (2005).

[12] Lin D.T., Cheng L.P., Kang Y.J., Chen L.W., Young T.H., Effects of Precipitation Conditions on the Membrane Morphology and Permeation Characteristics, J. Membr. Sci., 140, p. 185 (1998).

[13] Li D., Chung T.S., Ren J., Wang R., Thickness Dependence of Macrovoid Evolution in Wet Phase-Inversion Asymmetric Membranes, Ind. Eng. Chem. Res., 43, p. 1553 (2004).

[14] Yeow M.L., Liu Y.T., Li K., Morphological Study of Poly(Vinylidene Fluoride) Asymmetric Membranes: Effects of the Solvent, Additive, and Dope Temperature, J. Appl. Polym. Sci., 92, p. 1782 (2004).

[15] Cheng L.P., Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-Octanol/DMF/PVDF and Water/DMF/PVDF Systems, Macromolecules, 32, p. 6668 (1999).

[16] Buonomenna M.G., Macchi P., Davoli M., Drioli E., Poly(Vinylidene Fluoride) Membranes by Phase Inversion: The Role the Casting and Coagulation Conditions Play in Their Morphology, Crystalline Structure and Properties, Eur. Polym. J., 43, p. 1557 (2007).

[17] Madaeni S.S., Rahimpour A., Barzin J., Preparation of Polysulphone Ultrafiltration Membranes for Milk Concentration: Effect of Additives on Morphology and Performance, Iran. Polym. J., 14, p. 421 (2005).

[18] Bulte A.M.W., Folkers B., Mulder M.H.V., Smolders C.A., Membranes of Semicrystalline Aliphatic Polyamide Nylon 4,6: Formation by Diffusion-Induced Phase Separation, J. Appl. Polym. Sci., 50, p. 13 (1993).

[19] Cheng L.P., Young T.H., Fang L., Gau J.J., Formation of Particulate Microporous Poly(Vinylidene Fluoride) Membranes by Isothermal Immersion Precipitation from the 1-Octanol/ Dimethyl formamide/ Poly(Vinylidene Fluoride) System, Polymer, 40, p. 2395 (1999).

[20] Smolders C.A., Reuvers A.J., Boom R.M., Wienk I.M., Microstructures in Phase-Inversion Membranes. Part 1. Formation of Macrovoids, J. Membr. Sci., 73, p. 259 (1992).

[21] Boom R.M., Wienk I.M., van den Boomgaard Th., Smolders C.A., Microstructures in Phase-Inversion Membranes. Part 2. The Role of Polymeric Additive, J. Membr. Sci., 73, p. 277 (1992).

[22] Akbari A., Homayonfal M., Jabbari V., Synthesis and Characterization of Composite Polysulfone Membranes for Desalination in Nanofiltration Technique, Water Sci. Technol., 62, p. 2655 (2010).

[23] Young T.H., Cheng L.P., Lin D.J., Fane L., Chuang W.Y., Mechanisms of PVDF Membrane Formation by Immersion-Precipitation in Soft (1-Octanol) and Harsh (Water) Nonsolvents, Polymer, 40, p. 5315 (1999).

[24] Bulte A.M.W., Mulder M.H.V., Smolders C.A., Strathmann H., Diffusion Induced Phase Sseparation with Crystallizable Nylons. I. Mass Transfer Processes for Nylon 4,6, J. Membr. Sci., 121, p. 37 (1996).

[25] Wijmans J.G., Kant J., Mulder M.H.V., Smolders C.A., Phase Separation Pphenomena in Solutions of Polysulfone in Mixtures of a Solvent and a Nonsolvent: Relationship with Membrane Formation, Polymer, 26, p. 1539 (1985).

[26] Barzin J., Sadatnia B., Theoretical Pphase Diagram Calculation and Membrane Morphology Evaluation for Water/Solvent/Polyethersulfone Systems, Polymer, 48, p. 1620 (2007).

[27] van Aartsen J.J., Theoretical Observations on Spinodal Decomposition of Polymer Solutions, Eur. Polym. J., 6, p. 919 (1970).

[28] Bucknall C.B., Gomez C.M., Quintard I., Phase Separation from Solutions of Poly(ether Sulfone) in Epoxy Resins, Polymer, 35, p. 353 (1994).

[29] Nashi T., Wang T.T., Kwei T.K., Thermally Induced Phase Separation Behavior of Compatible Polymer Mixtures, Macromolecules, 8, p. 227 (1975).

[30] Gregorio Jr., R., Sousa Borges, D., Effect of Crystallization Rate on the Formation of the Polymorphs of Solution Cast Poly(Vinylidene Fluoride), Polymer, 49, p. 4009 (2008).

[31] Mendelsohn J.D., Barrett C.J., Chan V.V., Pal A.J., Mayes A.M., Rubner M.F., Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers, Langmuir, 16, p. 5017 (2000).

[32] Bottino A., Capannelli G., Monticelli O., Piaggio P., Poly(Vinylidene Fluoride) with Improved Functionalization for Membrane Production, J. Membr. Sci., 166, p. 23 (2000).

[33] Yan, L., Wang, J., Development of a New Polymer Membrane - PVB/PVDF Blended Membrane, Desalination, 281, p. 455 (2011).

[34] Lin D.-J., Chang C.-L., Huang F.-M., Cheng L.-P., Effect of Ssalt Additive on the Formation of Microporous Poly(Vvinylidene Fluoride) Membranes by Phase Inversion from LiClO4/Water/DMF/PVDF System, Polymer, 44, p. 413 (2003).

[35] Yuan Z., Dan-Li X., Porous PVDF/TPU Blends Asymmetric Hollow Fiber Membranes Prepared with the Use of Hydrophilic Additive PVP (K30), Desalination, 223, p. 438 (2008).

[36] Nunesa S.P., Peinemann K.V., Ultrafiltration Membranes from PVDF/PMMA Blends, J. Membr. Sci., 73, p. 25 (1992).

[37] Rajesh S., Senthilkumar S., Jayalakshmi A., Nirmala M.T., Ismail A.F., Mohan D., Preparation and Performance Evaluation of Poly (Amide-Imide) and TiO2 Nanoparticles Impregnated Polysulfone Nanofiltration Membranes in the Removal of Hhumic Substances, Collo. Surf. A: Physicochem. Eng. Aspects, 418, p. 92 (2013).

[38] Han B., Zhang D., Shao Z., Kong L., Lv S., Preparation and Characterization of Cellulose Acetate/Carboxymethyl Cellulose Acetate Blend Ultrafiltration Membranes, Desalination, 311, p. 80 (2013).

[39] Rana D., Scheier B., Narbaitz R.M., Matsuura T., Tabe S., Jasim S.Y., Khulbe K.C., Comparison of Ellulose Acetate (CA) Membrane and Novel CA Membranes Containing Surface Modifying Macromolecules to Remove Pharmaceutical and Personal Care Product Micropollutants from Drinking Water, J. Membr. Sci., 409, p. 346 (2012).

[40] Leo C.P., Linggawati A., Mohammad A.W., Ghazali Z., Effects of γ-Aminopropyltriethoxylsilane on Morphological Characteristics of Hybrid Nylon-66-Based Membranes Before Electron Beam Irradiation, J. Appl. Polym. Sci., 122, p. 3339 (2011).