سنتز سلولز میکروبی از سویه بومی و بررسی شبکه نانو الیافی به دست آمده از ساکاریدهای گوناگون

نوع مقاله: علمی-پژوهشی

نویسندگان

1 تهران، دانشگاه آزاد اسلامی، واحد تهران جنوب، گروه مهندسی شیمی نساجی و علوم الیاف

2 تهران، دانشگاه تربیت مدرس، دانشکده پزشکی، گروه میکروبیولوژی

چکیده

محدود بودن منابع طبیعی به ویژه در مورد سلولز که از گیاهان به دست می‌ آید، باعث شده است تا پژوهش ‌های بسیاری در زمینه منبع مناسب برای این ماده مهم انجام شود. در این رابطه تولید سلولز از رو‌ش‌های  گوناگونی مورد ارزیابی قرار گرفته است. یکی از مهمترین روش‌های تولید این پلیمر زیستی که در چند دهه اخیر رشد چشم گیری را داشته است، استفاده از برخی گونه ‌های باکتریایی است. سلولز باکتریایی از منبع کربوهیدراتی ساکاریدی تولید می‌ شود. در این پژوهش، در مرحله اول لایه ‌هایی از نانو الیاف سلولز باکتریایی از سه منبع ساکاریدی متفاوت (گلوکز ، ساکاروز و لاکتوز) در محیط کشت ایستا تولید شد، سپس با استفاده از روش‌های اندازه‌گیری رطوبت بازیافتی ، طیف سنجی فروسرخ، پراش پرتو ایکس و میکروسکوپ الکترونی (SEM) ، ساختار نانو الیاف فیبریلی سلولزهای باکتریایی تولیدی بررسی و با ساختار دو لیف سلولزی (پنبه و ویسکوز)  مقایسه شد. نتیجه‌ ها نشان دادند که عرض نانو الیاف فیبریلی سلولزهای باکتریایی بدین روش کمتر از 100 نانومتر و درصد بلوری لایه‌ های تولیدی از هر سه منبع نسبت به سلولز طبیعی موجود در پنبه کمتر (15-10%) و نسبت به سلولز بازیافتی موجود در ویسکوز بیشتر (13-9%) است. ساختار بلوری تمام سلولزهای باکتریایی تولیدی  از نوع I بود. لیکن مقدار سلولز I آلفای آنها متفاوت بود. میزان رطوبت بازیافتی سلولز باکتریایی نیز نسبت به سلولز طبیعی پنبه مقدار بیشتر(5%) و نسبت به سلولز بازیافتی ویسکوز مقدار کمتر (3%) بود.

کلیدواژه‌ها

موضوعات


[1] Retegi A., Gabilondo N., Pena C., de la Caba K., Mondragon I., Bacterial Cellulose Flms with Controlled Microstructure-Mechanical Property Relationships, Cellulose, 17, p. 661 (2010).

[2] Shezada O., Khana S., Khanb T., Kon Park J., Physicochemical and Mechanical Characterization of Bacterial Cellulose Produced with an Excellent Productivity in Static Conditions Using a Simple Fed-Batch Cultivation Strategy, Carbohydrate Polymers, 82, p. 173 (2010).

[3] Barreiro A.M., Recouvreux D.O., SPorto L.M., Rambo C.R., Hotza D., Sand Dollar Skeleton as Templates for Bacterial Cellulose Coating and Apatite Precipitation, J Mater Sci, 45, p. 5252 (2010).

[4] Cai Z., Kim J., Bacterial Cellulose/Poly(Ethylene Glycol) Composite:Characterization and First Evaluation of Biocompatibility, Cellulose, 17, p. 83 (2010).

[5] Khajavi R., Jahangirian Esfahani E., Sattari M., Crystalline Structure of Microbial Cellulose Compared with Native and Regenerated Cellulose, International Journal of Polymeric Materials, 60, p. 1178 (2011).

[6] Yang C., Tang T., Zhang S., Dai K., Gao C., Wan Y., Preparation and Characterization of Three-Dimension Nanostructured Macroporous Bacterial Cellulose/Agarose Scaffold for Tissue Engineering, J Porous Mater, 18, p. 545 (2010).

[7] Eichhorn S.J., Dufresne A., Aranguren M., Marcovich N. E., Review: Current International Research into Cellulose Nanofibres and Nanocomposites, J Mater Sci, 45, p. 1 (2010).

[8] Goelzer F.D.E., Faria-Tischer P.C.S., Vitorino J.C., Sierakowski Maria -R., Tischer C.A., Production and Characterization of Nanospheres of Bacterial Cellulose from Acetobacterxylinum from Processed Rice Bark, Materials Science and Engineering C, 29, p. 546 (2009).

[9] Meftahi A., Khajavi R., Rashidi A., Sattari M., Yazdanshenas M. E., Torabi M., The Effects of Cotton Gauze Coating with Microbial Cellulose, Cellulose, 17, p. 199 (2010).

[10] Kumar Pandey L., Saxena Ch., Dubey V., Studies on Pervaporative Characteristics of Bacterial Cellulose Membrane, Separation and Purification Technology, 42, p. 213 (2005).

[11] Kim j., Cai Z., Lee H. S., Choi G. S., Lee D. H., Jo C., Preparation and Characterization of a Bacterial Cellulose/Chitosan Composite for Potential Biomedical Application, J Polym Res, 18, p. 739 (2010).

[12] Thawatchai M., Seiichi T., Ratana R., Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing, Carbohydrate Polymers, 72, p. 43 (2008) .

[13] Wojciech K. Czaja, David J. Young, Marek  Kawecki, R. Malcolm Brown, Jr. The Future Prospects of Microbial Cellulose in Biomedical Applications, Biomacromolecules, 8(1), p. 1 (2007).

[14] Klemm D., Schumann D., Udhardt U., Marsch S., Bacterial Synthesized Cellulose-Artificial Blood Vessels for Micrpsurgery, Program In Polymer Science, 26, p. 1561 (2001).

[15] Alexander S., Robert H., "Biopolymers For Medical and Pharmaceutical Application", 1st Reprint, Wiley - VCH (2005).

[16] Brown M., Johnson B., "Microbial Synthesis of Cellulose", 1st Reprint, The University of Texas at Austin, (1982).

[17] Yu X., Rajai H.A., Production of Cellulose II by Acetobacter Xylinum in the Presence of     2,6-dichlorobenzonitrile, International Journal of Biological Macromolecules, 19, p. 145(1996).

[18] Keshk S., Sameshima K., Evaluation of Different Carbon Sources for Bacterial Cellulose Pproduction, African Journal of Biotechnology, 4(6), p. 478 (2005).

[19] Surma B., Presler S., Dariusz D., Characteristics of Bacterial Cellulose Obtained from Acetobactor Xylinum Culture for Application in Papermaking, Fibres & Textiles in Eastern Europe, l16 , 4(69), p. 108 (2007).

[20] Yan Z., Chen S., Wang H., Wang B., Wang C., Cellulose Synthesized by Acetobacter Xylinum in the Presence of Multi-Walled Carbon Nanotubes, Carbohydrate Research, 343, p. 73 (2008).

[21] Phisalaphong M., Jatupaiboon N., Biosynthesis and Characterization of Bacteria Cellulose-Chitosan Film, CarboHydrate, 74, p. 482 (2008).

[22] Chen S., Zou Y., Yan Zh., Shen W., Shi S., Zhang X., Wang H., Carboxymethylated-bacterial Cellulose for Copper and Lead ion Removal, Journal of Hazrdous Materials, 161, p. 1355 (2008).

[23] Keshk S., Homogenous Reactions of Cellulose from Different Natural Sources, Carbohydrate Polymers, 74, p. 942 (2008).

[24] Golezer F., Tischer P., Vitorino J., Sierakowski M., Tischer C., Production and Characterization of Nanospheres of Bacterial Cellulose from Acetobacterxylinum from Processed Rice Bark, Materials Science and Engineering, 29 p. 546 (2008).

[25] Oh S.Y., Yoo D.I., Shin Y., Kim H.C., Kim H.Y., Chung Y.S., Park W.H., Youk J.H., Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy, Carbohydrate Research, 340, p. 2376 (2005).

[26] Wang S., Cheng Q., Rials T.G., Lee S.H., "Cellulose Microfibril/Nanofibril and Its Nanocompsites, Tennessee Forest Products Center", University of Tennessee, pp. 303-308(2006).

[27] Li X., Chen S., Hu W., Shi S., Shen W., Zhang X., Wang H., In Situ Synthesis of CdS Nanoparticles on Bacterial Cellulose Nanofibers, Crabohydrate Polymers, 76 p. 509 (2009).

[28] Atalla R.H., Hackney J.M., Hemicelluloses as Structure Regulators in the Aggregation of Native Cellulose, Int. J. Biol. Macromol, 1, p. 109 (1993).

[29] Chung C., Lee M., Choe E.K., Characterization of Cotton Fabric Scouring by FT-IR ATR Spectroscopy, Carbohydrate Polymers, 58, p. 417 (2004).

[30] Oh S.Y., Yoo D.I., Shin Y., Sep G., FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide, Carbohydrate Research, 340, p. 417 (2005).

[31] Brown E., Bacterial Cellulose/Thermoplastic Polymer Nanocomposites, Master of Science in  Chemical Engineering, Washington State University(2007).

[32] Morton W. E., and Hearle J. W. S., Physical Properties of Textile Fibers, 1 st Reprint The Textile Institute, Manchester (1986).

[33] Yan Z., Chen S., Wang H., Wang B., Jiang J., Biosynthesis of Bacterial Cellulose/Multi-Walled Carbon Nanotubes in Agitated Culture, Carbohydrate Polymers, 74, p. 1 (2008).