اندازه گیری و مدل سازی تعادل فازی سامانه‌های دو جزئی کربن دی اکسید ـ تولوئن و کربن دی اکسید ـ اتانول در فشارهای بالا برای تعیین شرایط بهینه تولید ریز ذرات جامد در فرایند گاز ـ ضد حلال

نوع مقاله : کوتاه پژوهشی

نویسندگان

تهران، دانشگاه تربیت مدرس، دانشکده مهندسی شیمی

چکیده

در این پژوهش دستگاه تعادل فازی گاز- مایع در فشار بالا طراحی و ساخته شد و با استفاده از آن داده‌ های حلالیت کربن دی اکسید در حلال‌های تولوئن و اتانول در بازه‌ی دمای K 15/318-15/298 و تا فشار bar78 اندازه گیری شد. داده ‌های به ‌دست آمده نشان می ‌دهد که حلالیت کربن دی اکسید در هر دو حلال با افزایش فشار افزایش یافته و با افزایش دما، کاهش می‌ یابد. داده ‌های حلالیت به ‌دست آمده با استفاده از معادله حالت‌های پنگ- رابینسون و سواو- ردلیش- کوانگ و با قوانین اختلاط واندروالس و هوران- ویدال مدل ‌سازی شد و مؤلفههای تنظیم شونده این مدل‌ها به همراه خطای هر مدل به دست آمد. مشخص شد که مدل SRK-HV با خطای متوسط %52/2 برای سامانه کربن دی اکسید ـ تولوئن در چهار دمای آزمایش شده و خطای متوسط %79/3 برای سامانه کربن دی اکسید ـ اتانول در سه دمای آزمایش شده، مناسب ‌ترین مدل در میان سایر مدل‌های استفاده شده در پژوهش می ‌باشد. میانگین خطای معادله حالت سواو- ردلیش- کوانگ در همه دماها و فشارهای آزمایش شده %95/4 و برای معادله حالت پنگ رابینسون %15/5 است. همچنین بررسی منحنی انبساط حجمی نسبی حلال‌های تولوئن و اتانول در دماها و فشارهای گوناگون نشان می‌ دهد که دمای K 15/298 فشار حدود bar57 مناسب ‌ترین شرایط عملیاتی برای انجام فرایند گاز- ضدحلال با استفاده از حلال‌های تولوئن و اتانول می ‌باشد.

کلیدواژه‌ها

موضوعات


[1] Matson D.W., Fulton J.L., Petersen R.C., Smith R.D., Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Film and Fibers, Ind. Eng. Chem. Res., 26, p. 2298 (1987).
[2] Chattopadhyay P., Gupta R.B., Production of Antibiotic Nanoparticles Using Supercritical CO2 as Antisolvent with Enhanced Mass Transfer, Ind. Eng. Chem. Res., 40, p. 3530 (2001).
[3] Kikic I., Lora M., Bertucco A., Thermodynamic Analysis of Three Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gassaturated Solutions (PGSS) and Supercritical Antisolvent Crystallization (SAS), Ind. Eng. Chem. Res., 36, p. 5507 (1997). 
[4] Cocero M.J., Ferrero S., Crystallization of â-Carotene by a GAS Process in Batch: Effect of Operating Parameters, J. Supercrit. Fluids, 22, p. 237 (2002).
[5] Kalogiannis C.G., Eleni P., Panayiotou C.G., Production of Amoxicillin Microparticles by Supercritical Antisolvent Precipitation, Ind. Eng. Chem. Res., 44, p. 9339 (2005).
[6] de la Fuente J.C., Peters C.J., de Swaan Aronsqq J., Volume Expansion in Relation to the Gas Antisolvent Process, J. Supercrit. Fluids, 17, p. 13 (2000).
[7] Kordikowski A., Schenk A.P., Van Nielen R.M., Peters C.J., Volume Expansions and Vapor- Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents, J. Supercrit. Fluids, 8, p. 205 (1995).
[8] Prausnitz J.M., Benson P.R., Solubility of Liquids in Compressed Hydrogen, Nitrogen and Carbon Dioxide, AIChE J., 5, p. 161 (1959).
[9] Wu W., Ke J., Poliakoff M., Phase Boundaries of CO2 + Toluene, CO2 + Acetone, and CO2 + Ethanol at High Temperatures and High Pressures, J. Chem. Eng. Data, 51, p. 1398 (2006).
[10] Nemati Lay E., Taghikhani V., Ghotbi C., Measurement and Correlation of CO2 Solubility in the Systems of CO2 + Toluene, CO2 + Benzene, and CO2 + n-Hexane at Near-Critical and Supercritical Conditions, J. Chem. Eng. Data., 51, p. 2197 (2006).
[11] Peng D.Y., Robinson D.B., A New Two-Constant Equation of State, Ind. Eng. Chem. Fundam., 15, p. 59 (1976).
[12] Soave G., Equilibrium Constants From a Modified Redlich- Kwong Equation of State, Chem. Eng. Sci., 27, p. 1197 (1972).
[13] Prausnitz J.M., Rüdiger N.L., Gomes de Azevedo E., "Molecular Thermodynamics of Fluid-Phase Equilibria", 3 rd, Prentice-Hall, (1999).
[14] Huron M.J., Vidal J., New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid Equilibria of Strongly Non-Ideal Mixtures, Fluid Phase Equilib., 3, p. 255 (1979).
[15] Reno H., Prausnitz J.M., Local Compositions in Thermodynamics Excess Functions for Liquid Mixtures, AIChE Journal, 14, p. 135 (1968).
[16] Fink S.D., Hershey H.C., Modeling the Vapor-Liquid Equilibria of 1,1,1-Trichloroethane+Carbon Dioxide and Toluene + Carbon Dioxide at 308, 323 and 353 K, Ind. Eng. Chem. Res., 29, p. 295 (1990).
[17] Jennings D.W., Lee R.J., Teja A.S., Vapor-Liquid Equilibria in the Carbon Dioxide + Ethanol and Carbon Dioxide + 1-Butanol Systems, J. Chem. Eng. Data., 36, p. 303 (1991).