Removal of Hexavalent Chromium by Frrite Nono Particles

Document Type : Research Note

Authors

Petroleum and Chemical Engineering Department, Sharif University of Technology, Tehran, I.R. IRAN

Abstract

Heavymetals, present in many industrial wastewaters,are considered as majorpollutants of environment. Magnetic iron nanoparticles are known for their superior adsorption, ion exchange and electro-static forces characteristics.  The aim of this study was to evaluate the efficiency of magnetic nanoparticles for removal of hexavalent chromium from wastewater and the parameters that influence the removal. The magnetite nanoparticles were prepared by co-precipitation method where produced Fe3O4 nanoparticle’s average size was 40 nm. Various factors influencing the adsorption of metal ions, e.g., pH, temperature, amount of adsorbent (magnetic nanoparticles), initial concentration of chromium, andcontact time were investigated to optimize the operational conditions of the process and to detect particles of X-Ray Diffraction (XRD) pattern was used. Results indicated that the mechanism was strongly influencedby solution pH, similar to many adsorption processes. At  pH= 2, while initial concentration of chromium was 30 mg/L and a dose of 3.5 g/L synthesized magnetite nanoparticles was added, in 20 minutes contact time 94 % of chromium (VI) was removed. At higher pH levels of the solution, efficiency of removal declined. Final results proved that magnetite nanoparticles have high capacity for removal of chromium (VI) from solutions containing this salt, and removal efficiency for chromium(VI) is reversely related to pH. The results also showed the adsorption was decreased by increasing the initial concentrations of chromium(VI) in solutions. As expected an increase in adsorbent dosage increased the removal of chromium (VI). Equilibrium isotherms were analyzed by Langmuirand Freundlichadsorption models and the results proved that the behavior of chromium adsorption by Ferro-magnetic nano-particles is best expressed by Langmuir isotherm.

Keywords

Main Subjects


[1] Rozada F., Otero M., Morán A., García A.I., Adsorption of Heavy Metals onto Sewage Sudge-Derived Materials, Journal of Bioresource Technology. , 99: 6332-6338 (2008).
[2] Xin X., Wei Q., Yang J., Yan L., Feng R., Chen G., Du B., Li H., Highly Efficient Removal of Heavy Metal Ions by Amine-Functionalized Mesoporous Fe3O4 Nanoparticles, Journal of Chemical Engineering, 184: 132-140 (2012).
[3] Lin X.Z., Ma T.Y., Yuan Z.Y., Titania–Silica–Phosphonate Triconstituent Hybrid Mesoporous Materials as Adsorbents in Gas and Liquid Phases, Journal of Chemical Engineering, 166: 1144-1151 (2011).
[4] Fan H.M., Malini O., Borys S., Yi J.B., Ramaswamy B., Tan H.R., Xing G.C., Ng C.T., Liu L., Lucky S.S., Bay B.H., Ding J., Quantum Dot Capped Magnetite Nanorings as High Performance Nanoprobe for Multiphoton Fluorescence and Magnetic Resonance Imaging, Journal of the American Chemical Society, 132: 14803-14811 (2010).
[5] Sun S.H., Zeng H., Size-Controlled Synthesis of Magnetite Nanoparticles, Journal of the American Chemical Society, 124: 8204-8205 (2002).
[6] Wan S.R., Huang J.S., Yan H.S., Liu K.L., Size-Controlled Preparation of Magnetite Nanoparticles in the Presence of Graft Copolymers, Journal of Materials Chemistry, 16: 298-303 (2006).
[7] Hu J., Chen G.H., Lo-Irene M.C., Removal and Recovery of Cr(VI) Fromwastewater by Maghemite Nanoparticles, Water Research., 39: 4528-4536 (2005).
[8] Hu J., Lo-Irene M.C., Chen G.H., Comparative Study of Various Magnetic Nanoparticles for Cr(VI) Removal, Separation and Purification Technology, 56: 249-256 (2007).
[9] Wu Sh., Sun A., Zhai F., Wang J., Xu W., Zhang Q., Volinsky A.A., Fe3O4 Magnetit Nanoparticles Synthesis for Tailing by Ultrasonic Chemical co-Precipitation, Materials Letters, 65: 1882-1884 (2011).
[10] امیر کاوئی، م.؛ حامی، م،س.؛ عبداللهی پور ارکی.ا.ر.؛ حذف فلزات سنگین ،کروم ،مس و آرسنیک با استفاده از نانوذرات مغناطیسی از پساب­های صنعتی، چهارمین همایش تخصصی محیط زیست، دانشگاه تهران (1389).
 [11] Yong H., Chen M., Hu Zhong B., Effective Removal of Cu (II) Ions from Aqueous Solution by Amino-Functionalized Magnetic Nanoparticles, Journal of Hazardous Materials, 184: 392-399 (2010).
[12] Seco A., Marzal P, GabaldonC., Adsorption of Heavy Metals from Aqueous Solutions onto Activated Carbon in Single Cu and Ni Systems and in Binary Cu–Ni, Cu–Cd, and Cu–Zn Systems, Journal of Chemical Technology and Biotechnology, 68: 23-30 (1997).
[13] رحیمی، س.؛ اکبرنژاد، م.ا.؛ تراب بیگی، م.؛ ساعدی مقدم، م.؛ سلیم بهرامی، م.؛ بررسی حذف نیکل از پساب صنعتی با استفاده از نانوذرات آهن، اولین همایش فناوری پالایش در محیط زیست ،دانشگاه صنعتی شریف، (1390).
[14] Afkhami M., Norooz-Asl R., Removal, Preconcentration and Determination of Mo (VI) from Water and Wastewater Samples Using Maghemite Nanoparticles, Journal of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346: 52-57 (2009).
[15] خیاط سرکار، زهرا؛ خیاط سرکار، حامد؛ خیاط سرکار، فاطمه؛ سنتز و پایدار کردن سوسپانسیون نانوذرات مغناطیسی اکسید آهن سه ظرفیتی با سورفکتانت ها و بررسی خواص و کاربردهای نانوذرات مغناطیسی پایدار شده، دومین همایش ملی نانومواد ونانوتکنولوژی، (1389).
[16] تحریری، محمدرضا؛ مضطر زاده، فتح الله؛ راز مجید؛ عاشوری، ماریار؛ ساخت، مشخصه یابی و ارزیابی سلولی نانوذرات مگنتیت پوشش دهی شده با پلی وینیل الکل برای کاربرد های پزشکی، مواد پیشرفته در مهندسی، (1)32: 25 تا 37 (1392).
[17] Wang P., Lo IM., Synthesis of Mesoporous Magnetic -Fe2O3 and Its Application to Cr (VI) Removal from Contaminated Water, Water Res., 43: 3727-3734 (2009).