Kinetic Study of n-Hexane Biodegradation by an Isolated Fungal Consortium from a Biofilter

Document Type : Research Article

Authors

1 Chemical Engineering Department, Amirkabir University of Technology, PO Box 15875-4413 Tehran, I.R. IRAN

2 Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14115-143 Tehran, I.R. IRAN

Abstract

The kinetic study of a pollutant biodegradation is considered as one of the main steps in characterization of a biofilter performance. In this research, an unidentified fungal consortium which had been previously isolated from a compost biofilter treating n-hexane and toluene vapors, was used to remove n-hexane in a batch system. To specify the ability of the isolated fungi, the effect of operating temperature and pollutant concentration on the removal process were studied. The hexane concentration in liquid phase varied in the range of 5-25 mg/L and temperature altered between 25-45 °C in a central composite design  analysis. The optimum conditions for hexane biodegradation obtained at 36.5°C and 8.6 mg/L. The kinetic investigations at 25 and 40 °C presented that Haldane, Webb and Yano models could predict the biodegradation well with R2 > 0.98. The kinetic parameters of Haldane model at 40 °C were νmax= 3.57 (mg/gBiomass.h), KS=9.57 mg/L, and KI=20.48 mg/L.

Keywords

Main Subjects


[1] Kennes Ch., Thalasso F., Review: Waste Gas Biotreatment Technology, J. Chem. Technol. Biotechnol., 72, p. 303 (1998).
[2] Ellis T., Anselm C., Effect of Batch Discharges on Extant Biodegradation Kinetics in Activated-Sludge Systems, Water Environ. Res., 71(3), p. 290 (1999).
[3] Arcangeli J., Arvin E., Modeling the Growth of a Methanotrophic Biofilm: Estimation of Parameters and Variability, Biodegradation, 10, p. 177 (1999).
[4] Arriaga S., Revah S., Improving Hexane Removal by Enhancing Fungal Development in a Microbial Consortium Biofilter, Biotechnol. Bioeng., 90, p. 107 (2005).
[5] Munoz R., Arriaga S., Hernandez S., Enhanced Hexane Biodegradation in a Two Phase Partitioning Bioreactor: Overcoming Pollutant Transport Limitations, Process Biochem., 41, p. 1614 (2006).
[6] Zamir S.M., Halladj R., Nasernejad B., Removal of Toluene Vapors Using a Fungal Biofilter under Intermittent Loading, Process Saf.  Environ. Protect., 89, p. 8 (2011).
[7] صدرایی، س. م.، "حذف ترکیبات آلی فرار از هوا به وسیله یک بیوفیلتر تلقیح شده با قارچ"، پایان نامه کارشناسی ارشد مهندسی شیمی ـ بیوتکنولوژی، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر (1388).
[8] Jorio H., Brzezinski R., Heitz M., A Novel Procedure for the Measurement of the Kinetics of Styrene Biodegradation in a Biofilter, J. Chem. Technol. Biotechnol., 80, p. 796 (2005).
[9] Delhomenie M., Nikiema J., Bibeau L., Heitz M., A New Method to Determine Themicrobial Kinetic Parameters in Biological Air Filters, Chem. Eng. Sci., 63, p. 4126 (2008).
[10] Kim J., Oh K., Lee S., Kim S., Biodegradation of Phenol and Chlorophenols with Defined Mixed Culture in Shake-Flasks and a Packed Bed Reactor, Process Biochem., 37, p. 1367 (2002).
[11] Ottengraf S.P.P., Van den Oever A., Kinetics of Organic Compound Removal from Waste Gases with a Biological Ffilter, Biotechnol. Bioeng., 25, p. 3089 (1983).
[12] Jung I., Park Ch., Characteristics of Styrene Degradation by Rhodococcus Pyridinovorans Isolated from a Viofilter, Chemosphere, 61, p. 451 (2005).
[13] Singh R.K., Kumar Sh., Kuma, S., Kumar A., Biodegradation Kinetic Studies for the Removal of p-Cresol from Wastewater Using Gliomastix indicus MTCC 3869, Biochem. Eng. J., 40, p. 293 (2008).
[14] فردوسی، م.، "بررسی اثر دما و سیستم­های هوادهی پیوسته و ناپیوسته در حذف آلاینده­های آلی در فرایند بیوفیلتراسیون"، پایان نامه کارشناسی ارشد مهندسی شیمی ـ بیوتکنولوژی، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر (1389).
[15] Moe W., Qi B., Performance of a Fungal Biofilter Treating Gas-Phase Solvent Mixtures During Intermittent Loading, Water Res., 38, p. 2259 (2004).
[16] Maestre J., Gamisans X., Gabriel D., Lafuente J., Fungal Biofilters for Toluene Biofiltration: Evaluation of the Performance with Four Packing Materials under Different Operating Conditions, Chemosphere, 67, p. 684 (2007).
[17] رستم‌زا، م.، حامدی، ج.، نوحی، ا.، شیرابه ذرت، یک منبع نیتروژنی مناسب برای محیط پیش کشت  Saccharopolyspora erythraea و تولید اریترومایسین، نشریه شیمی و مهندسی شیمی ایران، (1)28، ص. 97 (1388).
[18] حامدی، ج.، مقیمی، ح.، صراف زاده، م.ح.، کفاشی، ب.، سنجش میزان رشد Streptomyces clavuligerus در محیط تولید کلاولانیک اسید با استفاده از معیار ثابت غلظت، نشریه شیمی و مهندسی شیمی ایران، (4)27، ص. 69 (1387).
[19] Fernandez A., Haaren B.V., Revah S., Phase Partition of Gaseous Hexane and Surface Hydrophobicity of Fusarium Solani When Grown in Liquid and Solid Media with Hexanol and Hexane, Biotechnol. Lett., 28, p.2011 (2006).
[20] Fazaelipoor M.H., Shojaosadati S.A., Farahani E.V., Two Liquid Pphase Biofiltration for Removal of n-Hexane from Polluted air, Environ. Eng. Sci., 23, p. 954 (2006).
[21] Ashoworth R.A., Howe G.B., MullinsM.E., RogersT.N., Air-Water Partitioning Coefficients of Organics in Dilute Aqueous Solutions, J. Hazard. Mater., 18, p. 25 (1988).
[22] Lee E., Cho K., Characterization of Cyclohexane and Hexane Degradation by Rhodococcus sp. EC1, Chemosphere, 71, p. 1738 (2008).
[23]APHA, “Standard Methods for the Examination of Water and Wastewater”, 19th ed., American Public Health Association, Washington, DC, USA. (1995).
[24] Shuler M.L., Kargi F., "Bioprocess Engineering", Prentice-Hall Inc., New Jersey, (1992).
[25] Oh Y.S., Shareefdeen Z., Baltzis B.C., Bartha R., Interaction Between Benzene, Toluene, and p-Xylene During Their Degradation, Biotechnol. Bioeng., 44, p. 533 (1994).
[26] Kumar A., Kumar Sh., Kumar S., Biodegradation Kinetics of Phenol and Catechol Using Pseudomonas Putida MTCC 1194, Biochem. Eng. J., 22, p. 151 (2005).