A Review of Electron Structure Changes in the Adsorption of Tunable Ionic Liquids with Nanostructures

Document Type : Review Article

Authors

1 Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, I.R.IRAN

2 Department of Chemistry, Faculty of Science, Gilan University, Rasht, I.R.IRAN

3 Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, I.R., IRAN

Abstract

In this review paper, a systematic study on the physical adsorption of ionic liquids with different cations, investigation of molecular interactions between cations and anions of tunable ionic liquids, study of different nanostructures based on graphene, silicon, germanium and boron-nitride without defects and comparison of stability between types of nanostructures and creating defects on them (pore defects and Stone Walls) and studying the effect of changes in the absorption of ionic liquids on different nanostructures without defects and defects on physical properties such as: bond energy, interaction energy, energy gap, chemical hardness, chemical potential and absorption spectra have been performed.

Keywords

Main Subjects


[1] Wasserscheid P., Keim W., Ionic Liquids-New Solutions for Transition Metal Catalysis, Angew. Chem., 39: 3773-3789 (2000).
[2] Seddon K.R., “Molten Salt Chemistry an Introduction and Selected Applications”, Reidel Publishing, Dordrecht, Netherlands, (1987).
[3] Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis., ACS. Rev., 99(8): 2071-2084 (1999).
[4] Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L., Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis, Inorg. Chem., 21: 1263-1264 (1982).
[5] Wilkes J.S., Zaworotko M.J., Air and Water Stable 1-Ethyl-3- Methylimidazolium based Ionic Liquids, J. Chem. SOC Chem. Commun., 13: 965-966 (1992).
[6] Davis J.H., Task-Specific Ionic Liquids, Chem. Lett., 33: 1072-1077 (2004).
[7] Visser A.E., Swatloski R.P., Reichert W.M., Mayton R., Sheff S., Wierzbicki A., Davis J.H., Rogers R.D., “Task-Specific Ionic Liquids for the Extraction of Metal Ions from Aqueous Solutions”, Chem. Commun., 135-136 (2001).
[8] Triolo A., Russina O., Fazio B., Appetecchi G.B., Carewska M., Passerini S., Nanoscale Organization in Piperidinium-based Room Temperature Ionic Liquids, J. Chemical Physics, 130: 164521-164526 (2009).
[9] Parsegian V.A., “Van der Waals Forces: A Handbook for Biologists, ChemistsEngineers, and Physicists”, Cambridge University Press, New York, USA, (2005).
[10] Mahanty J., Ninham B.W., “Dispersion Forces”, Academic Press, London, UK, (1976).
[11] Jeffrey G.A., “An Introduction to Hydrogen Bonding”, Oxford University Press, New York, USA, (1997).
[12] Metrangolo P., Resnati G., “Halogen Bonding: Fundamentals and Applications”, Springer, Berlin, Germany, (2008).
[13] Strassner T., Ahrens S., Tunable Aryl Alkyl Ionic Liquids (TAAILs): The Next Generation of Ionic Liquids, Angew. Chem. Int. Ed, 48(42): 7908 -7910 (2009).
[14] Schulz T., Strassner T., Biphasic Platinum Catalyzed Hydrosilylation of Terminal Alkenesin TAAILs, J. Organometallic Chemistry, 744: 113-118 (2013).
[15] Meyer D., Strassner T., 1,2,4-Triazole-based Tunable Aryl/Alkyl Ionic Liquids, J. Org. Chem, 76: 305-308 (2011).
[16] Wilson M., Kannangara K., Smith G., Simmons M., Raguse B., “Nanotechnology: basic Science and Emerging Technologies”, CRC Press, (2002).
[17] Balmain W., Philosophical MagazineSeries . 3(21): 270-277.,(1842).
[19] Golberg D., Bando Y., Huang Y., Terao T., Mitome M., Tang C., Zhi C., Boron nitridenanotubes and nanosheets, A.C.S. Nano, (4), 2979-2993.,(2010).
[20] Zhi C., Bando Y., Tang C., Kuwahara H., Golberg D., Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties,Advanced Materials, 21(28):2889-2893(2009).
[21] Du M., Wu Y., Hao X.,A Facile Chemical Exfoliation Method to Obtain Large Size Boron Nitride Nanosheets, Cryst.Eng.Comm, 15: 1782-1786(2013).
[25] Lee K.H., Shin H. J., Lee J., Lee I.-Y., Kim G.H., Choi J.Y., Kim S.W., Large-Scalesynthesis of High-Quality Hexagonal Boron Nitride Nanosheets for Large-Area Graphene Electronics, Nano. Lett., 12: 714-718 (2012).
[26] Sun W., Meng Y., Fu Q., Wang F., Wang G., Gao W., Huang X., Lu F., High-Yieldproduction of Boron Nitride Nanosheets and its uses as a Catalyst Support for Hydrogenation of Nitroaromatics, ACS Appl. Mater. Interfaces, 8: 9881-9888 (2016).
[27] Zhi C., Bando Y., Tang C., Golberg D., Boron Nitride Nanotubes, Mater. Sci. Eng. R., 70: 92-111 (2010).
[28]Kamath G., Baker G.A., Phys. Chem. Chem. Phys, (14): 7929-7933( 2012).
[29] Saikia N., Pati  S.K., Deka  R.C., First Principles Calculation on the Structure and Electronic Properties of BNNTs Functionalized with Isoniazid Drug Molecule, Applied Nanoscience, 2(3): 389-400 (2012).
[30] Gao Z., Zhi C., Bando Y., Golberg D., Serizawa T., Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine, Nanobiomedicine, 1(7): (2014).
[31] Dhungana K.B., Pat R., Boron Nitride Nanotubes for Spintronics, Sensors, 14(9): 17655-17685 (2014).
[32] Llanes-Pallas A., Yoosaf K., Traboulsi H., Mohanraj J., Seldrum T., Dumont J., Bonifazi D., Modular Engineering of H-Bonded Supramolecular Polymers for Reversible Functionalization of Carbon Nanotubes, Journal of the American Chemical Society, 133(39): 15412-15424 (2011).
[33] Lei  W., Zhang H., Wu Y., Zhang B., Liu D., Qin S., Liu Z., Liu L., Ma Y., Chen Y., Oxygen-Doped Boron Nitride Nanosheets with Excellent Performance in Hydrogen Storage, Nano Energy, 6: 219-224.,(2014).
[34] Huang  C.Y.X., Chen  C., Lin  S., Xie  D., A Computational Investigation of CO Oxidation on Ruthenium-Embedded Hexagonal Boron Nitride Nanosheet, Computat. Theor. Chem., 1011: 5-10 (2013).
[35] Farmanzadeh D., Ardehjani N.A., Theoretical Study of Ozone Adsorption on the Surface of Fe, Co and Ni Doped Boron Nitride Nanosheets, Appl. Surf. Sci, 444: 642-649 (2018).
[36] Tserpes K.I., Papanikos  P., The Effect of Stone–Wales Defect on the Tensile Behavior and Fracture of Single-Walled Carbon Nanotubes, Composite Structures, 79: 581–589 (2007).
[37] Chen Y.,.https://www.nature.com/articles/s41586-020-2405-7/figures/1
[38] Krätschmer W., Lamb L., Fostiropoulos D. K., Huffman D.R., ANew form of Carbon,Nature, 347354-358(1990).
[39] Ebrahim Zadeh Z., Yadollahpour M., Ziaei-Rad S., Karimzadeh F., The Effect of Vacancy Defects and Temperature on Fundamental Frequency of Single Walled Carbon Nanotubes, Computational Materials Science,63: 12-19(2012).
[41] Bettinger H.F., Dumitrica T.G.E., Scuseria B., Yakobson I., Mechanically Induced Defects and Strength of BN Nanotubes, Phys. Rev. B, 65: 041406 (2001).
[42] Shakourian-Fard M., Kamath G., Effect of Defect Types on the Electronic and Optical Properties of Graphene Nanoflakes Physisorbed by Ionic liquids, Phys. Chem. Chem. Phys., 19: 4383–4395(2017).
[43] Fefey E.G., Mohan R., Kelkar A., Computational Study of the Effect of Carbon Vacancy Defects on the Young’s Modulus of (6, 6) Single Wall Carbon Nanotube, Materials Science and Engineering B, 176: 693-700 (2011).
[44] Lu Z., Lv P., Liang Y., Ma D., Zhang Y., Zhang W., Yang X., Yang Z., CO Oxidationcatalyzed by the Single Co Atom Embedded Hexagonal Boron Nitride Nanosheet: a DFT-D Study, Phys. Chem. Chem. Phys., 18: 21865-21870 (2016).
[45] Lehtinen O., Dumur E., Kotakoski J., Krasheninnikov A.V., Nordlund K., Keinonen  J., Production of Defects in Hexagonal Boron Nitride Monolayer under Ion Irradiation, Nuclear Instruments and Methods in Physics Research, B, 269: 1327-1331 (2011).
[46] Kara A., Enriquez H., Seitsonen A.P., Lew Yan Voon L.C., Vizzini S., Aufray B., Oughaddou H.,Surface Science Reports, 67: 1-18 (2012).
[48] García G., Atilhan M., Aparicio S., Adsorption of Choline Benzoate Ionic Liquid on Graphene, Silicene, Germanene and Boron-Nitride Nanosheets: a DFT Perspective,Phys. Chem. Phys,17: 16315-16326 (2015).
[50] Azevedo S., Kaschny J.R., Castilho C.M.C.d., Brito Mota F.d., Electronic Structure of Defects in a Boron Nitride Monolayer, Eur. Phys. J. B., 67: 507–512 (2009).
[51] Rodrıguez-Manzo J.A., Tolvanen A., Krasheninnikov A.V., Nordlund K., Demortiere A., Banhart F., Defect-Induced Junctions between Single- or Double-Wall Carbon Nanotubes and Metal Crystals, Nanoscale, 2: 901–905 (2010).
[55] Shakourian-Fard M., Heydari H., Kamath G., Defect based Modulation of Opto-Electronic Properties for Biofunctionalized Hexagonal Boron Nitride Nanosheets, Chem. Phys. Chem., 18(17): 2328-2335 (2017).
[56] Shakourian-Fard M., Kamath G., Effect of Defect Types on the Electronic and Optical Properties of Graphene Nanoflakes Physisorbed by Ionic liquids, Phys. Chem. Chem. Phys., 19: 4383–4395 (2017).
[57] Shakourian-Fard M., Ghenaatian H.R., Kamath G., Maryamdokht Taimoory S., Unraveling the Effect of Nitrogen Doping on Graphene Nanoflakes and the Adsorption Properties of Ionic Liquids: A DFT Study, Journal of Molecular Liquids, 312: 113400 (2020).
[58] Ong S.P., Andreussi O., Wu Y., Marzari N., Ceder G., Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations, Chem. Mater, 23: 2979–2986 (2011).
[59] Marekha B. A., Kaluginb O. N., Idriss A., Non-Covalent Interactions in Ionic Liquid Ion Pairs and Ion Pair Dimers: a Quantum Chemical Calculation Analysis, Phys. Chem. Chem. Phys, 17: 16846-16857 (2015).
[62] Panja  S., Saha  S.,  Micro-Heterogeneity in Imidazolium and Piperidinium Cation based Ionic Liquids: 1D and 2D NMR Studies, Magnetic Resonance in Chemistry, 56: 95-102 (2018).
[63] Sun G., Bi J., Scalable Production of boron Nitride Nanosheets in Ionic Liquids by Shear- Assisted Thermal Treatment,  Ceramics International, 47: 7776-7782 (2021).