Experimental Investigation of CO2 Absorption/Desorption by Fe2O3 and TiO2 Nanoparticles

Document Type : Research Article

Authors

School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, I.R. IRAN

Abstract

In this study, TiO2 and Fe2O3 nanoparticles were used in enhancing CO2 absorption and stripping. For this regards, mentioned nanoparticles at different concentration were applied to 10 wt.% MDEA solution for CO2 absorption/desorption at a bubble column. Also, the Zeta potential analysis were studied to evaluate of all nanofluids stability and the experimental results of CO2 absorption and stripping was reported in presence nanoparticles. The results reveals that all nanofluids had better capability for CO2 absorption, TiO2 nanofluid with 0.1 wt.% concentration can increased CO2 absorption up to 28.4%, that it had highest performance than the other nanofluids due to more stability. In addition, the experimental tests of regeneration were shown lower ability of Fe2O3 nanoparticles on CO2 stripping than the TiO2 due to lower stability. Accordingly, TiO2 and Fe2O3 nano fluids at 0.05 wt.% concentration and 70oC regeneration temperature were lead to raising CO2 desorption as 25.8% and 24.5%, respectively.

Keywords

Main Subjects


[1] Jayanthakumaran, K., Verma R., Liu, Y.J.E.P., CO2 Emissions, Energy Consumption, Trade and Income: A Comparative Analysis of China and India. Energy Policy. 42: 450-460 (2012)
[2] Rangwala, H.A.J.J.o.M.S., Absorption of Carbon Dioxide into Aqueous Solutions Using Hollow Fiber Membrane Contactors. Journal of Membrane Science. 112(2): 229-240 (1996)
[3] Jiang, J., Zhao, B., Zhuo, Y., Wang, S., Experimental Study of CO2 Absorption in Aqueous MEA and MDEA Solutions Enhanced by Nanoparticles. International Journal of greenhouse gas control. 29: 135-141 (2014)
[4] Sepehri, A., Sarrafzadeh, M.-H., Effect of Nitrifiers Community on Fouling Mitigation and Nitrification Efficiency in a Membrane Bioreactor. Chemical Engineering and Processing-Process Intensification. 128: 10-18 (2018)
[5] Wong, S., R.J.A.R.C., Bioletti, Carbon Dioxide Separation Technologies. Alberta Research Council, (2002)
[6] Davison, J., K.J.G.g.c.t., Thambimuthu, Technologies for capture of carbon dioxide. Greenhouse gas control technologies, 3-13 (2005)
[7] Mondal, M.K., Balsora, H.K., Varshney, P.J.E., Progress and Trends in CO2 Capture/Separation Technologies: A Review. Energy. 46(1): 431-441 (2012)
[8] Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.J.C.E.J., Flue Gas Treatment Via CO2 Adsorption. Chemical Engineering Journal. 171(3): 760-774 (2011)
[9] Zhang, Z., Cai, J., Chen, F., Li, H., Zhang, W., Qi, W., Progress in Enhancement of CO2 Absorption by Nanofluids: A Mini Review of Mechanisms and Current Status. Renewable energy. 118: 527-535 (2018)
[10] Said, S., Govindaraj, V., Herri, J.M., Ouabbas, Y., Khodja, M., Belloum, M., Sangwai, J.S. Nagarajan, R., A Study on the Influence of Nanofluids on Gas Hydrate Formation Kinetics and Their Potential: Application to the CO2 Capture Process. Journal of Natural Gas Science and Engineering. 32: 95-108 (2016)
[11] Yu, C.H., Huang, C.H., Tan, C.S., A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research. 12(5): 745-769 (2012)
[12] Seddigh, E., Azizi, M., Sani, E.S., Mohebbi-Kalhori, D., Investigation of Poly (ether-b-amide)/Nanosilica Membranes for CO2/CH4 Separation. Chinese Journal of Polymer Science. 32(4): 402-410 (2014)
[13] Plaza, M.G., García, S., Rubiera, F., Pis, J.J., Pevida, C., Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal. 163(1-2): 41-47 (2010)
[14] Gantert, S., Möller, D.J.C.e., Ultrasonic desorption of CO2–a new technology to save energy and prevent solvent degradation. Chemical engineering & technology. 35(3): 576-578 (2012)
[15] Liu, H., Zhao, S., Zhou, F., Yao, C., Chen, G., Ultrasonic enhancement of CO2 desorption from MDEA solution in microchannels. Industrial & Engineering Chemistry Research. 58(4): 1711-1719 (2019)
[16] Ying, J., Haverkort, J.W., Eimer, D.A., Haugen, H.A., Ultrasound enhanced CO2 Stripping from Lean MEA Solution at Pressures from 1 to 2.5 bar (a). Energy Procedia. 114: 139-148 (2017)
[18] Bougie, F., Fan, X.J.E.P., Analysis of the Regeneration of Monoethanolamine Aqueous Solutions by Microwave Irradiation. Energy Procedia. 142: 3661-3666 (2017)
[19] Yang, J., Tan, H. Y., Low, Q. X., Binks, B. P., Chin, J. M., CO2 capture by dry alkanolamines and an efficient microwave regeneration process. Journal of Materials Chemistry. 3(12): 6440-6446 (2015)
[20] McGurk, S. J., Martín, C. F., Brandani, S., Sweatman, M. B., Fan, X., Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture. Applied energy. 192: 126-133 (2017)
[21] Bougie, F. Fan, X.J.I.J.o.G.G.C., Microwave regeneration of monoethanolamine aqueous solutions used for CO2 capture. International Journal of Greenhouse Gas Control. 79: 165-172 (2018)
[22] Chronopoulos, T., Fernandez-Diez, Y., Maroto-Valer, M.M., Ocone, R., Reay, D.A., CO2 desorption via microwave heating for post-combustion carbon capture. Microporous and mesoporous materials. 197: 288-290 (2014)
[23] Srisang, W., Pouryousefi, F., Osei, P. A., Decardi-Nelson, B., Akachuku, A., Tontiwachwuthikul, P., Idem, R., CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines. International Journal of Greenhouse Gas Control, 69: 52-59 (2018)
[24] Liang, Z., Idem, R., Tontiwachwuthikul, P., Yu, F., Liu, H., Rongwong, W., Experimental study on the solvent regeneration of a CO2‐loaded MEA solution using single and hybrid solid acid catalysts. AIChE Journal, 62(3): 753-765 (2016)
[25] Osei, P. A., Akachuku, A., Decardi-Nelson, B., Srisang, W., Pouryousefi, F., Tontiwachwuthikul, P., Idem, R., Mass transfer studies on catalyst-aided CO2 desorption from CO2-loaded amine solution in a post-combustion CO2 capture plant. Chemical Engineering Science. 170: 508-517 (2017)
[26] Zhang, X., Zhang, X., Liu, H., Li, W., Xiao, M., Gao, H., Liang, Z. , Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts. Applied Energy. 202: 673-684 (2017)
[27] Rashidi, H., Sohrabi, R.J.E.P., Energy, S., Detailed performance model of carbon dioxide absorption utilizing titanium dioxide nanoparticles in a wetted wall column. Environmental Progress & Sustainable Energy, 38(6): 13211 (2019)
[29] Pashaei, H., Ghaemi, A., Behroozi, Mashhadimoslem, A.H., Hydrodynamic and mass transfer parameters for CO2 absorption into amine solutions and its blend with nano heavy metal oxides using a bubble column. Separation Science and Technology, 1-16 (2021)
[30] Pashaei, H., Ghaemi, A.J.J.o.E.C.E., CO2 absorption into aqueous diethanolamine solution with nano heavy metal oxide particles using stirrer bubble column: Hydrodynamics and mass transfer, Journal of Environmental Chemical Engineering, 8(5): 104110 (2020)
[31] Pashaei, H., Ghaemi, A., Nasiri, M., Heydarifard, M., Experimental investigation of the effect of nano heavy metal oxide particles in Piperazine solution on CO2 absorption using a stirrer bubble column. Energy & Fuels, 32(2): 2037-2052 (2018)
[32] Lee, J.S., Lee J.W., Kang, Y.T.J.A.e., CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application. Applied energy, 143: 119-129 (2015)
[33] Yu, W., Wang, T., Fang, M. X., Hei, H., Luo, Z.Y., CO2 Absorption/Desorption Enhanced by Nanoparticles in Post-combustion CO2 Capture. in International Symposium on Coal Combustion. Springer. In International Symposium on Coal Combustion, Springer, Singapore, 591-596 (2015)
[34] Lee, J.W., Pineda, I.T., Lee, J.H., Kang, Y.T., Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents. applied energy. 178: 164-176 (2016)
[35] Wang, T., Yu, W., Liu, F., Fang, M., Farooq, M., Luo, Z., Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions. Industrial & Engineering Chemistry Research, 55(28): 7830-7838 (2016)
[37] Santos, S.P.d., Comparative study of amine solutions used in CO2 absorption/desorption cycles. Doctoral dissertation, Instituto Superior de Engenharia de Lisboa. (2013)
[38] Ali, N., J.A. Teixeira, Addali, A.J.J.o.N., A review on nanofluids: fabrication, stability, and thermophysical properties. Journal of Nanomaterials. 2018 Jan 1;)2018(
[39] Bolourchian Tabrizi, S.Z., Shahhosseini, S., Ghaemi, A., Insights Into the Mass Transfer Mechanisms of Nanofluids: A CO2 Absorption Study. Energy & Fuels, 35(24): 20172-20184 (2021)
[40] Yoon, S., Chung, J.T., & Kang, Y.T., The particle hydrodynamic effect on the mass transfer in a buoyant CO2-bubble through the experimental and computational studies. International Journal of Heat and Mass Transfer, 73: 399-409 (2014)
[41] Kim, J.H., Jung, C.W., Kang, Y.T. , Mass transfer enhancement during CO2 absorption process in methanol/Al2O3 nanofluids. International Journal of Heat and Mass Transfer, 76: 484-491 (2014)
[42] Kluytmans, J.H.J., Van Wachem, B.G.M., Kuster, B.F.M., Schouten, J.C., Mass transfer in sparged and stirred reactors: influence of carbon particles and electrolyte. Chemical Engineering Science, 58(20): 4719-4728 (2003)
[43] Alper, E. Öztürk, S.J.T.C.E.J., The effect of activated carbon loading on oxygen absorption into aqueous sodium sulphide solutions in a slurry reactor. The Chemical Engineering Journal, 32(2): 127-130 (1986)
[44] Tinge, J., Drinkenburg, A.J.C.e.s., Absorption of gases into activated carbon—water slurries in a stirred cell. Chemical engineering science, 47(6): 1337-1345 (1992)
[46] Pineda, I. T., Lee, J. W., Jung, I., Kang, Y. T. , CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. International journal of refrigeration, 35(5): 1402-1409 (2012)
[47] Kim, W.G., Kang, H.U., Jung, K.M., Kim, S.H., Synthesis of silica nanofluid and application to CO2 absorption. Separation Science and Technology, 43(11-12): 3036-3055 (2008)