Optimization of Sodium Percarbonate Granulation Process in a Top Spray Conical Fluidized Bed

Document Type : Research Article

Authors

1 Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, I.R. IRAN

2 Faculty of Chemical & Petroleum and Gas Engineering, Semnan University, P.O. Box. 35131-19111 Semnan, I.R. IRAN

Abstract

The purpose of this study was to optimize the granulation process of sodium percarbonate in a top spray conical fluidized bed. Granular particles are obtained by coupling fluidized particles with a solution of sodium percarbonate, and the physical properties of the granules, such as particle size and their distribution, can be increased. The variables studied in
the design of experiment were the fluidization air temperature (T), the spraying pressure (P), the amount of soluble solvent (M), and the concentration of the binding solution (C). Response surface methodology (RSM) was carried out using Design Expert 7 software. The results showed that by increasing the fluidization air temperature and the spraying pressure, the particle size decreased and the particle size increased with increasing solubility and binding concentration. RSM method is able to determine the range for the best production conditions for an acceptable granule size. In this study, an experimental correlation was presented for the size of the granule, in terms of the variables.

Keywords

Main Subjects


[1] ارجمندی، مهدی؛ الحسینی، سید حسن؛ سیدین، سیدهادی، بررسی آزمایشگاهی فرایند پوشش دهی پودر سدیم پرکربنات با محلول سدیم سیلیکات در بسترسیال، نشریه شیمی و مهندسی شیمی ایران، (4) 32: 45 تا 58 (1392).
[2] Fries L., Antonyuk S., Heinrich S., Palzer S., Dem-Cfd Modeling of a Top-Spray Fluidized Bed Granulator and a Wurster-Coater,  Chemical Engineering Science, 66(11): 2340–2355( 2011).
[3] Aleksic I., Duris J., Ilicb I., Ibrica S., Parojcica J., Srcic, S., In Silico Modeling of in Situ Fluidized Bed Melt Granulation, International Journal of Pharmaceutics, 466(1-2): 21–30(2014).
[4] Catak M., Bas N., Cronin K., Markov Chain Modelling of Fluidised Bed Granulation, Chemical Engineering Journal, 164(2-3): 403–409(2010).
[5] Seo A., Holm P., Schæfer T., Effects of Droplet Size and Type of Binder on the Agglomerate Growth Mechanisms by Melt Agglomeration in a Fluidised Bed, European Journal of Pharmaceutical, 16(3): 95–105(2002).
[6] Hemati M., Cherif R., Saleh K., Pont V., Fluidized Bed Coating and Granulation: Influence of Process-Related Variables and Physicochemical Properties on the Growth Knetics, Powder Technology, 130(1): 18–34(2003).
[7] Walker G. M., Andrews G., Jones D., Effect of Process Parameters on the Melt Granulation of Gharmaceutical Powders, Powder Technology, 165(3): 161–166(2006).
[8] Chen Y., Yang J., Dave R. N., Pfeffer R., Granulation of Cohesive Geldart Group C Powders in a Mini-Glatt Fluidized Bed by Pre-Coating with Nanoparticles, Powder Technology, 191(1–2): 206–217(2009).
[9] Tan H. S., Salman A. D., Hounslow M. J., Kinetics of Fluidised Bed Melt Granulation I: The Effect of Process Variables, Chemical Engineering Science, 61(5): 1585–1601(2006).
[10] Ziyani L., Fatah N., Use of Experimental Designs to Optimize Fluidized Bed Granulation of Maltodextrin, Advanced Powder Technology, 25(3): 1069–1075(2014).
[11] Srinivasakannan C., Balasubramaniam N., Particle Growth in Fluidised Bed Granulation, Chem. Biochem. Eng., 17(3): 201–205(2003).
[13] Patel T. B., Patel L. D.,. Patel T. B, Makwana S. H., Patel T. R., Influence of Process Variables on Physicochemical Properties of the Granulation Mechanismo of Diclofenac Sodium in Fluid Bed Granulation, International Journal of Pharmaceutical Review and Research, 3(1): 61–65(2010).
[14] Patnaik K.S.K.R., Sriharsha K., Granule Growth Mechanism Studies in a Fluidized Bed Granulation, Int. J. Chem. Eng. Appl., 1(3): 282-286(2010).