Phosphomolybdic Acid Immobilized on Ionic Liquid-Modified Halloysite: Catalytic Utility for the Synthesis of Pyrazolopyranopyrimidines

Document Type : Research Article

Authors

1 Petrochemical Research Institute, Iran Polymer and Petrochemical Research Institute, Tehran, I.R. IRAN

2 Department of Chemistry, Al-Zahra University, Tehran, I.R. IRAN

Abstract

Heteropolyacids are non-toxic bifunctional catalysts with high thermal stability which can promote both oxidation and acid-catalyzed reactions. The hybridization of this class of catalysts with other species is of great interest. Despite all outstanding features of heteropolyacids, their solubility in water and most organic solvents limit their applications. Herein, to circumvent this issue and develop an efficient heterogeneous catalyst, halloysite clay was used as catalyst support for the immobilization of heteropolyacids. To improve the immobilization, the halloysite clay was functionalized with ionic liquid. The obtained catalyst was characterized with FTIR, SEM/EDX, and XRD and successfully used for catalyzing the ultrasonic-assisted four-component reaction of barbituric acid, hydrazine hydrate, ethyl acetoacetate and benzaldehyde for the synthesis of pyrazolopyranopyrimidine derivatives in high yield. Notably, the catalyst was reusable and could be reused for four reaction runs.

Keywords

Main Subjects


[1] Eshghi H., Javid A., Khojastehnezhad A., Moeinpour F., Bamoharram F. F., Bakavoli M., Mirzaei M., Preyssler Heteropolyacid Supported on Silica Coated NiFe2O4 Nanoparticles for the Catalytic Synthesis of bis(dihydropyrimidinone)benzene and 3,4-dihydropyrimidin-2(1H)-ones, Chinese J. Catal., 36: 299–307. (2015).
[2] Sadjadi S., Heravi M.M., Recent Advances in Applications of POMs and Their Hybrids in Catalysis, Curr. Org. Chem., 20: 1404-44. (2016).
[4] Escobar A., Sathicq A., Pizzio L., Blanco M., Romanelli G., Biomass Valorization Derivatives: Clean Esterification of 2-Furoic Acid Using Tungstophosphoric Acid/Zirconia Composites as Recyclable Catalyst, Process Saf. Environ. Prot., 98: 176–86. (2015).
[5] Zhang Y., Yang H. Co3O4 Nanoparticles on the Surface of Halloysite Nanotubes, Phys. Chem. Miner., 39: 789-95. (2012).
[6] Yuan P., Southon P.D., Liu Z., Green M.E.R., Hook J.M., Antill S.J., Kepert C.J., Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane, J. Phys. Chem. C, 112: 15742–51. (2008).
[7] Szczepanik B., Słomkiewicz P. Photodegradation of Aniline in Water in the Presence of Chemically Activated Halloysite, Appl. Clay Sci., 124-125: 31–8 (2016).
[8] Grabka D., Raczyńska-Żak M., Czech K., Słomkiewicz P. M., Jóźwiak M.A., Modified Halloysite as an Adsorbent for Prometryn from Aqueous Solutions, Appl. Clay Sci., 114: 321–9. (2015).
[9] Zhu H., Du M.L., Zou M.L., Xu C.S., Fu Y.Q., Green Synthesis of Au Nanoparticles Immobilized on Halloysite Nanotubes for Surface-Enhanced Raman Scattering Substrates, Dalton Trans., 41: 10465–71. (2012).
[10] Heravi M.M., Saeedi M., Beheshtiha Y.S., Oskooie H.A., One-pot Synthesis of Benzochromeno-Pyrazole Derivatives. Mol. Divers. 15: 239–43. (2011).
[11] Sadjadi S., Heravi M. M., Daraie M. Cyclodextrin Nanosponges: a Potential Catalyst and Catalyst Support for Synthesis of Xanthenes, Res. Chem. Intermed., 43: 843–57. (2017).
[13] جورشعبانی، میلاد؛ بدیعی، علیرضا؛ لشگری، نگار؛ تهیه و شناسایی نانو متخلخل v-SBA-16 و کاربرد آن به عنوان کاتالیست در فرایند اکسایش مستقیم بنزن به فنل، نشریه شیمی و مهندسی شیمی ایران، (3)34: 13 تا 20 (1394).
[14] کوشکی، عماد؛ روشن ضمیر، سوسن؛ بهینه سازی لایه کاتالیست کاتدی در پیلهای سوختی غشای تبادل پرتون، نشریه شیمی و مهندسی شیمی ایران، (3)34: 21 تا 30 (1394).