Manufacturing of Cubic Nanocrystallites of Silver by Nanophytosynthesis Method and Their Application in Enhance of Tetracycline Antibiotic Activities

Document Type : Research Article

Authors

1 Dep. Chemistry, Ardabil Branch, I.A. University, Ardabil, Iran

2 Department of Chemistry, Khalkhal Branch, Islamic Azad University, Khalkhal, I.R. IRAN

Abstract

In this study, cubic nanocrystallites of silver nanoparticles were synthesized by the nano photosynthesis method with the utilization of the secondary metabolite of black hawthorn (Crataegus melanocarpa) leaf methanolic extract. The structure and optical properties of the obtained nanoparticles were investigated by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transform InfraRed (FT-IR), and UltraViolet-Visible (UV/Vis) spectroscopy. Antibacterial effect of produced silver nanocrystallites as separately and in combined with tetracycline against four Gram-positive and Gram-negative bacterial species were studied according to the disk diffusion method. The biological study showed that these silver nanoparticles obtained by the nano photosynthesis method have good affectivity against the growth of bacteria and enhances the antibacterial effect of tetracycline as an antibiotic. Increasing the inhibition of bacterial growth by these nanocrystals was attributed to their cubic structure.  Also, the nano photosynthesis method for nanoparticle preparation is an economical, fast, eco-friendly, and green synthesis method and provides optimal conditions for nanoparticle production.

Keywords

Main Subjects


 
[1] McNeil S.E., Leukoc J., Nanotechnology for the Biologist, J. Leukocyte Biolog,78: 585-594 (2005).
[2] Kumar A., Jakhmola A., RNA-Mediated Fluorescent Q-Pb Nanoparticles, Langmuir, 23: 2915-2918 ( 2007).
[3] Aslan K., Geddes C.D., Metal-Enhanced Fluorescence: An Emerging Tool in Biotechnology, Curr. Opin. Biotechnol., 16: 55-62 (2005).
[4] Sosa I.O., Noguez C., Barrera R.G., Optical Properties of Metal Nanoparticles with Arbitrary Shapes, ‎J. Phys. Chem., 107:6269-6275 (2003).
[5] Sun Y. G., Mayers B., Herricks T., Xia Y. N., Polyol Synthesis Of Uniform Silver Nanowires: a Plausible Growth Mechanism and the Supporting Evidence, J.Nano Lett., 3: 955-960 (2003).
[6] پایه قدر، محمود؛ ذولفقاری، امیر حسین؛ بررسی اثرهای نانوذره های تیتانیم دی اکسید بر مقدار حفاظت در برابر پرتوهای فرابنفش در کرم­های ضدآفتاب، نشریه شیمی و مهندسی شیمی ایران، (1)35: 111 تا 124 (1395).
[7] کوکبی، یونس؛ امانی، حسین؛ کریمی نژاد، حسن؛ بررسی خاصیت ضد باکتریایی نانوذره های نقره در پلی استایرن­های انبساطی دیرسوز و استاندارد، نشریه شیمی و مهندسی شیمی ایران، (4)35: 161 تا 174 (1395).
[8] Te-Hsing W., Yi-Der T., Lie-Hang S., The Novel Methods For Preparing Antibacterial Fabric Composites Containing Nanomaterial, J. Solid State Phenom., 124: 1241-1244 (2007)
[9] Hardman R. A., Toxicological Review of Quantum Dots: Toxicity Depends on Physic-Chemical and Environmental Factors, Environ. Health. Perspect., 114: 165-172 (2005).
[11] Navaladian S., Viswanathan B., Viswanath R.P., Varadarajan T.K., Thermal Decomposition as Route for Silver Nanoparticles, Nanoscale Res. Lett., 2: 44- 48 (2007).
[12] Chandran S.P., Chaudhary M., Pasricha R., Ahmad A., Sastry M., Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe Vera Plant Extract, Biotechnol. Prog., 22: 577–583 (2006).
[13] Chamakura K., Perez-Ballestero R., Luo Z.P., Bashir S., Liu J., Comparison of Bactericidal Activities of Silver Nanoparticles with Common Chemical Disinfectants, Colloids Surf. B Biointerfaces, 84: 88–96 (2011).
[14] Medina-Ramirez I., Luo Z.P., Bashir S., Mernaugh R., Liu J.L., Facile Design and Nanostructural Evaluation of Silver-Modified Titania Used as Disinfectant, Dalton Trans., 40: 1047–1054 (2011).
[15] Magana S.M., Quintana P., Aguilar D.H., Toledo J.A., Angeles-Chavez C., Cortes M.A., Leon L., Freile-Pelegrin Y., Lopez T., Torres Sanchez R.M., Antibacterial Activity of Montmorillonites Modified with Silver, J. Mol. Catal. A Chem., 281: 192-199 (2008).
[16] Nithya R., Ragunathan R., Synthesis of Silver Nanoparticle Using Pleurotus Sajor Caju and Its Antimicrobial Study, Dig. J. Nanomater. Biostruct., 4: 623–629 (2009).
[17] Lara H.H., Nunez N.V.A., Turrent L.I., Rodriguez-Padilla C., Mode of Antiviral Action of Silver Nanoparticles Against HIV-1, J. Nanobiotechnology., 8: 1-10 (2010).
[18] Barati B., Saadati M., Bahmani M.Kh., Isolation and Detection of Enterotoxigenic Staphylococcus Aureus Type A By Multiplex PCR, Mil. Med. J., 8: 119-128 (2006).
[19] Fortner J.D., Lyon D.Y., Sayes C.M., Boyd A.M., Falkner J.C., Hotze E.M., Nanocrystal Formation and Microbial Response, Environ. Sci. Technol., 39: 4307-4316 (2005).
[20] Jones G.L., Muller C.T., O’Reilly M., Stickler D.J., Effect of Triclosan on the Development of Bacterial Biofilms by Urinary Tract Pathogens on Urinary Catheters, J. Antimicrob. Chemother., 57: 266-272 (2006).
[21] Amanda S., Mohammad F., John J., Schlager D., Syed A., Metal-Based Nanoparticles and Their Toxicity Assessment, J. Nanomed. Nanobiotechnol.2: 544-568 (2010).
[22] Akhavan M., Shafaghat A., Salimi F., Novel Acetylated Chalcone and Biflavonoid Glycosides from Trigonosciadium Brachytaenium (Boiss.) Alava.,  Nat. Prod. Res., 27: 2111-17 (2013).
[24] Kasthuri J., Veerapandian S., Rajendiran N., Biological Synthesis of Silver and Gold Nanoparticles Using Apiin as Reducing Agent, Colloids Surf. B Biointerfaces, 68: 55–60 (2009).
[25] Zargar M., Abdul Hamid A., Abu Bakar F., Nor Shamsudin M., Shameli K., Jahanshiri F., Farahani F., Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex negundo L., Molecules, 16: 6667-6676 (2011).
[26] Schussler M., HolzlJ., FrickeU., Myocardial Effects of Flavonoids from Crataegus Species,   Arzneimittelforschung, 45: 842-845 (1995).
[27] Shameli K., Bin Ahmad M., Zargar M., Wan Yunus W.M.Z., Rustaiyan A., Ibrahim N.A., Synthesis of Silver Nanoparticles In Montmorillonite and Their Antibacterial Behavior, Int. J. Nanomed., 6: 581-590 (2011).
[29] Martel S., Method and System for Controlling Micro-Objects or Micro-Particle, United States Patent, USP 20100215785, Appl. 11/145,007(2005).
[30] Dibrov P., Dzioba J., Gosink K.K., Hase C.C., Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio Cholerae, Antimicrob. Agents. Chemother.,  46: 2668–2670 (2002).