Synthesis of Self-Cleaning Photocatalytic Coating Based on Titania-Silica-Mn Nanostructured Composite

Document Type : Research Article

Authors

1 Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan, I.R. IRAN

2 Department of Materials Engineering, Takestan Branch, Islamic Azad University, Takestan, I.R. IRAN

Abstract

Using self-cleaning coatings in the glass industry can significantly improve the cleaning of glasses. Titania, with its photocatalytic properties, is one of the options that has attracted the attention of researchers to synthesize self-healing photocatalytic coatings based on their composites. Therefore, the present study attempted to study the conditions for the synthesis of titanium-silica-manganese composites. For this purpose, stable titanium-silica-manganese solids were prepared by polymer method and coated with Sedalim glass using the dipping method. Then the heat treatment was applied to the glass and powdered from the dried tuber. In order to study the properties of synthetic samples, Fourier Transform InfraRed (FT-IR), X-Ray Diffraction (XRD), X-ray Diffraction Spectroscopy (EDS), and UV-Visible Intrusive Reflection (DRS) spectroscopy Became The photocatalytic activity of synthetic composite was also determined based on the degree of degradation of methyl esterification as a contaminant in its vicinity in the presence of ultraviolet waves. The solution concentrations were determined using a UV-vis spectrophotometer. Self-absorption properties of the coating were also measured by measuring the contact angle (CA) of the water on its surface. In order to investigate and observe the microstructure of the synthetic sample, a Field Emission Scanning Electron Microscope (FESEM) was used. In this study, using a sol-gel method, Titanium-silica-manganese composite coating with an anatomic phase with a crystalline diameter of 8.9 nm, a 4-degree wettability angle under visible light, and the potential for degradation of methylene polysaccharide with a yield of 83%, it was synthesized as a nanostructured self-enveloping photocatalytic coating.

Keywords

Main Subjects


[1] وحیده تاجر کجینه ­باف، حسین سرپولکی، تورج محمدی، بررسی تأثیر سیلیکا بر ویژگی­های و ریزساختار ممبران­های تیتانیایی نانوساختار (پایان نامه مقطع دکتری مهندسی مواد ـ سرامیک، دانشگاه علم و صنعت ایران، دانشکده مهندسی مواد و متالورژی 1392ک)
[2] Zhang X, Fujishima A., Jin M., Emeline A.V., Murakami T., Double-Layered TiO2–SiO2 Nanostructured Films with Self-Cleaning and Anti Reflective Property.  J. Phys. Chem. B, 110, 25142–25148 (2006).
[3] مصیبی، ابوالقاسم؛ مواد خودتمیزشونده، ماهنامه فناوری نانو، سال هشتم، 139: 20 تا 28 (1388).
[4] Diamanti M.V., Del Curto B., Ormellese M., Pedeferri M.P., Photocatalyticandself-Cleaning Activity of Colored Mortars Containing TiO2, Constr. Build. Mater., 46: 167–174 (2013).
[5] Guillard C., Herrmann J.M., Puzenat E., Peruchon L., Photocatalytic Efficiencies of Self-Cleaning Glasses. Influence of Physical Factors. Photochem. Photobiol. Sci., 8: 1040-1046 (2009).
[6] Falcaro P., Zaccariello G., Stoyanova V., Benedetti A., Costacurta S., Temperature Matters: An Infrared Spectroscopic Investigation on the Photocatalytic Efficiency of Titania Coating. Sci. Adv. Mater., 6: 1330-1337 (2014).
[7] Aguia C., Angelo J., Madeira L.M., Mendes A., Influence of Photocatalytic Paint Components on the Photoactivity of P25 Towards NO Abatement, Catal. Today, 151: 77–83 (2010).
[8] Chen X., Selloni A., Introduction: Titanium Dioxide (TiO2) Nanomaterials, Chem. Rev., 114: 9281–9282 (2014)
[9] Yoon H., Kim H., Latthe S. S., Kim M. W., Aideyab S., Yoon S. S., A Highly Transparent Self-Cleaning Super Hydrophobic Surface by Organo Silane-Coated Alumina Particles Deposited Via Electro Spraying, J. Mater. Chem., A, 3: 11404–11410 (2015).
[10] Ochiai T., Fujishima A., Photoelectrochemical Properties of TiO2 Photocatalystand Its Applications for Environmental Purification, J. Photochem. Photobiol. C, 13: 247-262 (2012).
[12] Liang F., Kelly T.L., Luo L., Li H., Sailor M. J., Li Y.Y., Self-Cleaning Organic Vaporsensor Based on a Nanoporous TiO2 Interferometer, Appl. Mater. Interfaces, 4: 4177–4183 (2012).
 [13] Nakata K., Sakai M., Ochiai T., Murakami T., Takagi K., Fujishima A., Antireflection and Self-Cleaning Properties of a Moth-Eye-Like Surface Coated with TiO2 Particles, Langmuir, 27: 3275–3278 (2011)
[14] Tricoli A., Righettoni M., Pratsinis S. E., Anti Foggingnano Fibrous SiO2 and Nanostructured SiO2–TiO2 Films Made by Rapid Flame Deposition and in Situannealing, Langmuir, 25: 12578–12584 (2009).
[15] Radeti C.M., Functionalization of Textile Materials with TiO2 Nanoparticles, J. Photochem. Photobiol. C: Photochemistry Reviews, 16: 62-76 (2013).
[16] Lai Y., Tang Y., Gong J., Gong D., Chi L., Lin C., Chen Z., Transparent Super Hydrophobic/Super Hydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-Fogging, J. Mater. Chem., 22: 7420–7426 (2012).
[17] Li Q., Sun D., Kim H., Fabrication of Porous TiO2 Nano Fiber and Its Photocatalytic Activity, Mater. Res. Bull., 46: 2094–2099 (2011)
[19] Qi K., Wang X., Xin J.H., Photocatalytic Self-Cleaning Textiles Based on Nanocrystalline Titanium Dioxide, Text. Res. J., 81: 101-110 (2011)
[20] Raquel P., Garikoitz B., Arrate M., Josu G., Ana A., Development of Multifunctional Sol–Gel Coatings: Anti-Reflection Coatings with Enhanced Self-Cleaning Capacity. Sol. Energy Mater. Sol. Cells, 94: 1081–1088 (2010).
[21] Costacurta S., DalMaso G., Gallo R., Guglielmi M., Brusatin G., Falcaro P., Influence of Temperature­ the Photocatalytic Activity of Sol-Gel TiO2 Films. ACS Appl. Mater. Interfaces, 2: 1294-1298 (2010).
[22] MauryRamirez A., Nikkanen J. P., Honkanen M., Demeestere K., Levänen E., DeBelie N., TiO2 Coatings Synthesized by Liquid Flame Spray and Low Temperature Sol-Gel Technologies on Autoclavedaerted Concrete for Air-Purifying Purposes, Mater. Charact., 87: 74–85 (2014).
[23] مقدم، سمیرا؛ ظرافت، محمد مهدی؛ صباغی، صمد؛ تجزیه فتوکاتالیستی فنول با استفاده از نانوکامپوزیت C-TiO2، نشریه شیمی و مهندسی شیمی ایران، 37(1): 41 تا 50 (1397).
[24] Mozia S., Morawski A. W., Toyoda M., Inagaki M., Application of Anatase-Phase TiO2 for Decomposition of Azo Dye in a Photocatalytic Membrane Reactor. Desalination, 241: 97-105 (2009).
[25] Zhijie Li.,­ Hou B., Xu­Y. ­, Wu­ D., ­Sun­ Y., Hu­­­W.­,­ Deng F., Comparative Study of Sol–Gel-Hydrothermal and Sol–Gel Synthesis of Titania–Silica Composite Nanoparticles. J. Solid. State. Chem., 178: 1395–1405 (2005).
[27] Ullah R., Dutta J., Photocatalytic Degradation of Organic Dyes with Manganese-Doped ZnO Nanoparticles,  J. Hazard. Mater., 156:194–200 (2008).
[28] Falcaro P., Zaccariello G., Stoyanova V., Benedetti A., Costacurta S., Temperature Matters: An Infrared Spectroscopic Investigation on the Photocatalytic Efficiency of Titania Coating.  Sci. Adv. Mater., 6: 1330-1337 (2014).
[29] Jensen H., Soloviev A., Li Z., Sogaard E. G., XPS and FTIR Investigation of the Surface Properties of Different Prepared Titanianano-Powders. Appl. Surf. Sci., 246: 239–249 (2005).
[31] Li Z., Hou B., Xu Y., Wu D., Sun Y., Hu W., Deng F., Comparative Study of Sol–Gel-Hydrothermal and Sol–Gel Synthesis of Titania–Silica Composite Nanoparticles, J. Solid State Chem., 178: 1395–1405 (2005).