Synthesis of Magnetic Nanocomposite (MnFe2O4 @ SiO2 @ NH2) and Attachment to Acylation of Multi-Walled Carbon Nanotubes and Identification

Document Type : Research Article

Authors

1 Nanobiotechnology Research Center, Avicenna Research Institute-ACECR, Tehran, I.R. IRAN

2 Iranian Institute of R&D in Chemical Industries (IRDCI)-ACECR, Tehran, I.R. IRAN

Abstract

In this work, superparamagnetic nanocomposite of Manganese ferrite was synthesized, using a co-precipitation method, and to prevent oxidation and increase of OH-functional groups on the surface, nanoparticles were reacted with tetra-orthosilicate and Silica coating was created on the surface of nanoparticles. In order to establish a chemical bond in subsequent reactions, the surface of the nanoparticles were covered and functionalized with 3-amino-propyltrimetoxycycline (APTMS). On the other hand, Multi-Walled Carbon NanoTubes (MWCNTs) with a diameter of 8 nm, increase the reactivity was reacted and functionalized with HNO3 Followed by thionyl chloride. Finally, the magnetic nanoparticles of manganese ferrite with an amine functional group are reacted with acylated  MWCNTs. Magnetic nanoparticles were identified using FT-IR spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometers  (VSM), X-Ray Diffraction (XRD) and Raman spectroscopy (RAMAN).

Keywords

Main Subjects


[1] Dyal A., Loos K., Noto M., Chang S.W., Spagnoli C., Shafi K.V., Gross R.A., Activity of Candida Rugosa Lipase Immobilized on γ-Fe2O3 Magnetic Nanoparticles, J. Am. Chem. Soc., 125(7): 1684-1685 (2003).
[2] Ma W.F., Zhang Y., Li L.L., You L.J., Zhang P., Zhang Y.T., Wang C.C., Tailor-Made Magnetic Fe3O4@mTiO2 Microspheres with a Tunable Mesoporous Anatase Shell for Highly Selective and Effective Enrichment of Phosphopeptides, ACS Nano., 6(4): 3179-3188 (2012).
[3] Valenzuela R., “Magnetic Ceramics”, Cambridge University Press. (2005)
[5] Corma A., Garcia H., Silica‐Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis, Adv. Synth. Catal., 348(1213): 1391-412 (2006)
[8] Hlatky G.G., Heterogeneous single-site catalysts for olefin polymerization, Chem. Rev., 100(4): 1347-76 (2000).
[9] Wei S., Ma Z., Wang P., Dong Z., Ma J., Anchoring of Palladium (II) in Functionalized SBA-16: An Efficient  Heterogeneous Catalyst for Suzuki Coupling Reaction, J. Mol. Catal. A: Chem., 370: 175-181 (2013).
[10] Niyogi S., Hamon M.A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M.E., Haddon R.C., Chemistry of Single-Walled Carbon Nanotubes, Acc. Chem. Res., 35(12): 1105-1113 (2002).
[12] Gupta A.K., Gupta M., Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications, Biomaterials, 26(18): 3995-4021 (2005).
[13] Ramaswamy B., Kulkarni S.D., Villar P.S., Smith R.S., Eberly C., Araneda R.C., Depireux D.A., Shapiro B., Movement Of Magnetic Nanoparticles In Brain Tissue: Mechanisms And Impact on Normal Neuronal Function, Nanomedicine: Nanotechnology, Biology and Medicine, 11(7): 1821-1829 (2015).
[14] He L., Wang M., Ge J., Yin Y., Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures, Acc. Chem. Res., 45(9): 1431-1440 (2012).
[15] Kavre I., Kostevc G., Kralj S., Vilfan A., Babič D., Fabrication of Magneto-Responsive Microgears Based on Magnetic Nanoparticle Embedded PDMS, RSC Adv, 4(72):38316-38322 (2014).
[16] Mornet S., Vasseur S., Grasset F., Veverka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E., Magnetic Nanoparticle Design for Medical Applications, Prog. Solid State Chem, 34(2-4): 237-247 (2006).
[17] Gleich B., Weizenecker J., Tomographic Imaging Using the Nonlinear Response of Magnetic Particles, Nature, 435(7046): 1214 (2005).
[18] Hyeon T., Chemical Synthesis of Magnetic Nanoparticles, Chem. Commun., 8: 927-934 (2003).
[19] Frey N., Sun S., Magnetic Nanoparticle for Information Storage Applications, Chem. Soc. Rev., 38: 2532-2542 (2009).
[20] Elliott D.W., Zhang W.X., Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment, Environ. Sci. Technol., 35(24): 4922-4926 (2001).
[21] Philip J., Shima P.D., Raj B., Nanofluid with Tunable Thermal Properties, Appl. Phys. Lett., 92(4): 043108 (2008).
[22] Philip J., Jaykumar T., Kalyanasundaram P., Raj B., A Tunable Optical Filter, Meas. Sci. Technol., 14(8): 1289-1294 (2003).
[23] Mahendran V., Philip J., Nanofluid Based Optical Sensor for Rapid Visual Inspection of Defects In Ferromagnetic Materials, Appl. Phys. Lett., 100(7): 073104 (2012).
[25] Ball P., The Perfect Nanotube, Nature, 382(6588): 207-208 (1996).
[26] Wong E.W., Sheehan P.E., Lieber C.M., Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 277(5334): 1971-1975 (1997).
[27] Salvetat J.P., Bonard J.M., Thomson N.H., Kulik A.J., Forro L., Benoit W., Zuppiroli L., Mechanical Properties of Carbon Nanotubes, Appl Phys A, 69(3): 255-260 (1999).
[28] Ajayan P.M., Nanotubes from Carbon, Chem. Reviews, 99(7): 1787-1800 (1999).
[29] Iijima S., Helical Microtubules of Graphitic Carbon, Nature, 354(6348):56 (1991).
[30] Ebbesen T.W., Lezec H.J., Hiura H., Bennett J.W., Ghaemi H.F., Thio T., Electrical conductivity of Individual Carbon Nanotubes, Nature, 382(6586): 54 (1996).
[32] Gan Z.H., Zhao Q., Gu Z.N., Zhuang Q.K., Electrochemical Studies of Single-Wall Carbon Nanotubes as Nanometer-Sized Activators in Enzyme-Catalyzed Reaction, Anal Chim Acta, 511(2): 239-247 (2004).
[33] Baughman RH, Zakhidov AA, De Heer WA. Carbon Nanotubes--the Route Toward Applications, Science, 297(5582): 787-792 (2002).
 [34] Dillon A., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S., Heben M.J., Storage of Hydrogen in Single-Walled Carbon Nanotubes, Nature, 386(6623):377 (1997).
 [35] Van S. E., Prinsloo F.F., Comparison of Preparation Methods for Carbon Nanotubes Supported Iron Fischer–Tropsch Catalysts, Catal Today, 71(3-4): 327-334 (2002).
[36] Salavati-Niasari M., Esmaeili E., Seyghalkar H., Bazarganipour M., Cobalt (II) Schiff Base Complex on Multi-Wall Carbon Nanotubes (MWNTs) by Covalently Grafted Method: Synthesis, Characterization and Liquid Phase Epoxidation of Cyclohexene by Air, Inorg  Chim  Acta, 375(1): 11-19 (2011).
[37] Penza M., Antolini F., Antisari M.V., Carbon Nanotubes as SAW Chemical Sensors Materials, Sens actuators B: Chem., 100(1-2): 47-59 (2004).
[38] Choi G.S., Son K.H., Kim D.J., Fabrication of High Performance Carbon Nanotube Field Emitters, Microelectronic Engineering, 66(1-4): 206-212 (2003).
[39] Chen L., Xie H., Yu W., Functionalization Methods of Carbon Nanotubes and Its Applications, Carbon Nanotubes Applications on Electron Devices, p.213 (2011)
[40] Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C., Chemical Oxidation of Multiwalled Carbon Nanotubes, Carbon, 46(6):833-840 (2008).
[41] Fu K., Huang W., Lin Y., Riddle L.A., Carroll D.L., Sun Y.P., Defunctionalization of Functionalized Carbon Nanotubes, Nano Letters, 1(8): 439-441 (2001).
[42] Rashid  Z., Naeimi H., Zarnani A.H., Nazari, M., Nejadmoghaddam M.R., Ghahremanmzadeh R., Fast and Highly Efficient Purification of 6×Histidine-Tagged Recombinant Proteins by Ni-Decorated MnFe2O4@SiO2@NH2@2AB as a Novel and Efficient Affinity Adsorbent Magnetic Nanoparticles, RSC Adv., 6(43): 36840-36848 (2016).
[43] Javidparvar A.A., Ramezanzadeh B., Ghasemi E., The Effect of Surface Morphology and Treatment of Fe3O4 Nanoparticles on the Corrosion Resistance of Epoxy Coating,  J. Taiwan Inst. Chem. E,  61: 356-366 (2016).
[44] Aijun H., Juanjuan L., Mingquan Y., Yan L., Xinhua P., Preparation of Nano-MnFe2O4 and Its Catalytic Performance of Thermal Decomposition of Ammonium Perchlorate, Chinese J. Chem. Eng., 19(6): 1047-1051 (2011).
[45] Sahoo B., Sahu S.K., Nayak S., Dhara D., Pramanik P., Fabrication of Magnetic Mesoporous Manganese Ferrite Nanocomposites as Efficient Catalyst for Degradation of Dye Pollutants, Catal Sci Technology, 2(7):1367-1374 (2012).
[46] Stöber W., Fink A., Bohn E., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci., 26(1):6 2-69 (1968).
[47] Qhobosheane M., Santra S., Zhang P., Tan W., Biochemically Functionalized Silica Nanoparticles, Analyst, 126(8): 1274-1278 (2001).
[48] Butterworth M.D., Illum L., Davis S.S., Preparation of Ultrafine Silica-and PEG-Coated Magnetite Particles, Colloid Surface A.: Physicochemical and Engineering Aspects, 179(1): 93-102 (2001).
[49] Santra S., Tapec R., Theodoropoulou N., Dobson J., Hebard A., Tan W., Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles In Microemulsion: The Effect of Nonionic Surfactants, Langmuir, 17(10): 2900-2906 (2001).
[51] Masteri-Farahani M., Tayyebi N., A New Magnetically Recoverable Nanocatalyst for Epoxidation of Olefins, J. Mol. Catal. A-Chem., 348(1-2):83-7 (2011).