Encapsulation of B6 Vitamin by Boron Nitride Nanotube using DFT Calculation

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Petroleum and Chemical Engineering, Science and Research Unit, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemical Engineering, Varamin-Pishva Branch, Islamic Azad University, Varamin, I.R. IRAN

3 Department of Chemical Engineering, Faculty of Petroleum and Chemical Engineering, Sharif University of Technology, Tehran, I.R. IRAN

4 Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, I.R. IRAN

Abstract

In this research, the interaction of boron nitride (6,6) nanotubes with a length of 8 nm with vitamin B6 (pyridoxal phosphate) was theoretically investigated and the effects of electron destabilization, dipole-dipole interactions and steric repulsions on the structural and electronic properties and The reactivity of vitamin B6 (pyridoxal phosphate) in the presence of single-wall boron nitride (6.6) nanotubes with a length of 8 angstroms was studied using density functional theory quantum mechanical calculations at the B3LYP computational theoretical level and G* 31-6 basis series. . In order to determine the electrical conductivity and chemical behavior of boron nitride nanotubes in reaction with vitamin B6, electron energies, dipole moments, energy gap of homo-lomo molecular orbitals, chemical hardness (η), electron chemical potential (μ) And Mulliken's electronegativity (χ) and adsorption energy (EAd) were investigated in the gas and solvent phases. The results showed that the adsorption energy in the gas and solvent phases is -12.962 and -7.895 kcal/mol, respectively, which shows that the adsorption reaction is feasible in both phases in terms of energy. In the gaseous phase, the energy gap in the encapsulated vitamin B6-boron nitride nanotube mixture (3.517 Eg= electron volts) has decreased compared to the energy gap in the vitamin B6 molecule alone (4.561 Eg= electron volts). In the vitamin B6-boron nitride nanotube encapsulated mixture, with the reduction of the Eg energy gap, the hardness parameter has decreased, the softness parameter has also decreased, and the electronegativity and electrophilicity values ​​have increased.

Keywords

Main Subjects


[1] Mohammadizadeh M., Bostan A., Kadkhodaee R., Preparation and Characterization of α-Tocopherol-Loaded Nano-Lipid Carriers: Effect of Lipid Type and Carrier Oil Content, Iran. J. Chem. Chem. Eng. (ijcce), 40(3): 715-724 (2021).
[2] Mendes R.G., Bachmatiuk A., Büchner B., Cuniberti G., Rümmeli M.H., Carbon Nanostructures as Multi-Functional Drug Delivery Platforms. J. Mater. Chem. B. 1(4): 401-428 )2013(.
[3] Rastogi V., Yadav P., Bhattacharya S.S., Mishra A.K., Verma N., Verma A., Pandit J.K., Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells. J Drug Deliv. 2(1): 1-23 (2014).
[5] Lu F., Wang F., Cao l., Hexagonal Boron Nitride Nanomaterials: Advances Towards Bioapplications. Nanosci. Nanotechnol. Lett. 4(10): 949-961 (2012).
[6] Mirzababaei M., Larijani K., Hashemi-Moghaddam H., Mirjafary Z., Madanchi H., In Vitro Targeting of NL2 Peptide Bounded on Poly L-DOPA Coated Graphene Quantum Dot. J. Fluorescence. 31(1): 279-288 (2021).
[8] Saeidian H., Shirmohamadi Bahadoran S., Mohammadpour Dounighi N., Controlled Release of Compsobuthus Scorpion Venom Prepared from Chitosan Nanoparticles as an Antigen Delivery System. Nashrieh Shimi va Mohandesi Shimi Iran, 39(2): 1-10. (2020).
[10] Maiorova L.A., Erokhina S.I., Pisani M.,  Barucca G., Marcaccio M., Koifman O.I., Salnikov D.S., Gromova O.A., Astolfi P.,  Ricc V., Encapsulation of Vitamin B12 into Nanoengineered Capsules and Soft Matter Nanosystems for Targeted Delivery. Colloids Surf. B: Biointerfaces. 182: 110366 (2019).
[11] Mujica-Álvarez J., Gil-Castell O., Barra P.A., Ribes-Greus A., Bustos R., Faccini M., Matiacevich S., Encapsulation of Vitamins A and E as Spray-Dried Additives for the Feed Industry. Molecules. 25(6): 1357 (2020).
[12] Umadevi P., Aiswarya T., Senthilkumar L., Encapsulation of Fluoroethanols in Pristine and Stone–Wales Defectboron Nitride Nanotube – A DFT Study. Appl. Surf. Sci. 345(8): 369–378 (2015).
[13] Gorain B., Chaudhury H., Pandey M., Kesharwani P., Abeer M., Tekade R.K., Hussain Z., Carbon Nanotube Scaffolds as Emerging Nanoplatform for Myocardial Tissue Regeneration: A Review of Recent Developments and Therapeutic Implications. Biomed. Pharmacother. 104(1): 496-508 (2018).
[15] Siria A., Poncharal P., Biance A.L., Fulcrand R., Blase X., Purcell S.T., Bocquet L., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature. 494(2): 455–458 (2013).
[16] Guerra J., Herrero M.A., Vázquez E., Carbon Nanohorns as Alternative Gene Delivery Vectors. RSC Adv. 4(3): 27315–27321 (2014).
[17] CRAMER C.J., Essentials of Computational Chemistry: Theories and Models. Second Edition, John Wiley & Sons Ltd, Chichester, England, (2004).
[18] Krüger A., Liang Y., Jarrea G., Stegk J., Surface Functionalization of Detonation Diamond Suitable for Biological Applications. J. Mater. Chem. 16(2): 2322–2328 (2006).
[19] Mochalin V.N., Shenderova O., Ho D., Gogotsi Y., The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 7(4): 11–23 (2012).
[20] Frisch M.J., et al., Gaussian 09. Revision A.1, Inc.: Wallingford CT. (2009).
[21] Lesarri A., Vega-Toribio R.D., Suenram D.J., Brugh D., Nori-Shargh J.E., Structural Evidence of Anomeric Effects in the Anesthetic Isoflurane. Phys. Chem. Chem. Phys. 13(1): 6610-6619 (2011).
[22] Masnabadi N., Nori-Shargh D., Azarakhshi F., Zamani Ganji H., Abbasi M., Karamad S., Kasaei Gh., Hybrid-Density Functional Theory, MO Study, and NBO Interpretation of Conformational Behaviors of 2-Halo-1,3-Dioxanes and Their Dithiane and Diselenane Analogs. Phosphorus, Sulfur, and Silicon. 187(2): 305-320 (2012).
[23] نوروزی علیرضا.، مطالعه نظری جذب داروی پنی سیلامین بر روی نانو لوله­ ی تک جداره بورنیترید فرم صندلی 5،5، نشریه شیمی و مهندسی شیمی ایران، 40(4): 21 تا 32 (1400).
[24] Glendening D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, NBO version 5.G. (2004).
[25] Seminario J.M. and Politzer P., Modern Density Function Theory, a Tool for Chemistry, Elsevier, Amsterdam (1995).
[27] Beyatricks K.J., Dhananjaya, Development of Fast Dissolving Oral Films Containing Vitamin B6 for Nausea and Vomiting of Pregnancy (NVP), J. Drug Delivery Therapeutics. 9(3): 51-59 (2019).
[28] Singh, B., Kaur, G., Singh, P., Nanostructured Boron Nitride with High Water Dispersibility for Boron Neutron Capture Therapy. Sci Rep. 6: 35535 (2016).
[29] Tasi G., Palinko I., Nyerges L., Fejes P., Foerster H., Calculation of Electrostatic Potential Maps and Atomic Charges for Large Molecules. J. Chem. Inf. Comput. Sci. 33: 296–299 (1993).
[30] Alipour M. and Mohajeri A., Molecular Electrostatic Potential as a tool for Evaluating the Etherification Rate Constant. J. Phys. Chem. A. 114(27): 7417-7422 (2010).
[31] Lakshminarayanan S., Jeyasingh V., Murugesan K., Selvapalam N., Dass G., Molecular Electrostatic Potential (MEP) Surface Analysis of Chemo Sensors: An Extra Supporting Hand for Strength, Selectivity & Non-Traditional Interactions. J. Photochem. Photobiol. 6: 100022-4 (2021).
[32] Sen K.D., Jorgensen C.K., Electronegativity, Structure and Bonding. Springer-Verlag: New York. (1987).
[33] Keefer E.W., Botterman B.R., Romero M.I., Rossi A.F., Gross G.W., Carbon Nanotube Coating Improves Neuronal Recordings. Nat. Nanotechnol. 3(2): 434–439 (2008).
[34] Al-Jamal K.T., Nunes A., Methven L., Ali-Boucetta H., Li S., Toma F.M., Herrero M.A., Al-Jamal W.T., Ten Eikelder H.M.M., Foster J., Degree of Chemical Functionalization of Carbon Nanotubes Determines Tissue Distribution and Excretion Profile. Angew. Chem. Int. Ed. Engl. 51(4): 6389–6393 (2012).
[35] Bhattacharya K., Mukherjee S.P., Gallud A., Burkert S.C., Bistarelli S., Bellucci S., Bottini M., Star A., Fadeel B., Biological Interactions of Carbon-Based Nanomaterials: From Coronation to Degradation. Nanomed. NBM. 12(3): 333–351 (2016).
[36] Niskanen J., Zhang I., Xue Y., Golberg D., Maysinger D., Boron Nitride Nanotubes as Vehicles for Intracellular Delivery of Fluorescent Drugs and Probes. Nanomedicine. 11(2): 447–463 (2016).