Synthesis and Characterization of Gelatin-Polyvinyl Alcohol Hydrogel for Use in the Release of Fluvoxamine Maleate

Document Type : Research Article

Authors

Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract

In this work, gelatin-polyvinylalcohol hydrogel was prepared using K2S2O8 in aqueous media in the presence of N,N′-methylenebisacrylamide. The gelatin-polyvinylalcohol hydrogel was characterized by FT-IR, SEM and swelling studies. Then, loading and release of fluvoxamine maleate drug was investigated using gelatin-polyvinylalcohol hydrogel. The effects of temperature and pH on the loading and release of fluvoxamine maleate drug in gelatin-polyvinylalcohol hydrogel were studied. FT-IR results confirmed the formation of gelatin and polyvinyl alcohol hydrogel. The results showed that the maximum drug release was obtained at pH = 2 at room temperature after 6 hours with a value of 43.98 ppm. Gelatin-polyvinyl alcohol hydrogel shows about 11 times water absorption at room temperature. The gelatin-polyvinyl alcohol hydrogel is sensitive to pH and temperature and provides controlled release of fluvoxamine maleate in the gastric environment.

Keywords


[1] Campoccia D., Doherty P., Radice M., Brun P., Abatangelo G., Williams D.F., Semisynthetic Resorbable Materials from Hyaluronan Esterification, Biomaterials, 19: 2101-2127 (1998).
[2] Prestwich G.D., Marecak, D.M., Marecak, J.F., Vercruysse, K.P., Ziebell, M.R., Controlled Chemical Modification of Hyaluronic Acid: Synthesis, Applications, and Biodegradation of Hydrazide Derivative, J. Controlled Release, 53: 93-103 (1998).
[3] Lakouraj, M.M.; Tajbakhsh, M.; Mokhtary, M.; Synthesis and Swelling Characterization of Cross-Linked PVP/PVA Hydrogels, Iran. Polym. J., 14: 1022-1030 (2005).
[4] Enayati M.S., Behzad T., Sajkiewicz P., Rafienia M.,   Bagheri  R.,  Ghasemi-Mobarakeh  L.,  Kolbuk  D.,  Pahlevanneshan  Z.,  Bonakdar S.H., Development of Electrospun Poly (Vinylalcohol)-Based Bionanocomposite Scaffolds for Bone Tissue Engineering, J. Biomed. Mater. Res, 106: 1111–1120 (2018).
[5] Sabzi M., Afshari M.J., Babaahmadi, M., Shafagh N., pH-Dependent Swelling and Antibiotic Release from Citric Acid Crosslinked Poly(Vinyl Alcohol) (PVA)/Nano Silver Hydrogels, Colloids Surf. B Biointerfaces, 188: 110757 (2020).
[6] Hoare T.R., Kohane, D.S., Hydrogels in Drug Delivery: Progress and Challenges, Polymer, 49: 1993-2007 (2008).
[7] Lau H.K., Kiick K.L., Opportunities for Multicomponent Hybrid Hydrogels in Biomedical Applications, Biomacromolecules, 16: 28-42 (2015).
[8] Kabiri K., Omidian H.,  Zohuriaan-Mehr M.J., Doroudiani S., Superabsorbent Hydrogel Composites and Nanocomposites: A Review., Polym. Compos., 32: 277-289 (2011).
[9] Chopra H., Kumar S.,  Singh I., Bioadhesive Hydrogels and Their Applications, Wiley, (2020).
[10] Chopra H., Singh I., Kumar S., Bhattacharya T., Rahman H., Akter R., Kabir T., Comprehensive Review on Hydrogels, Curr. Drug Deliv., 19: 658-675 (2022).
[11]  Chopra H., Kumar S., Singh I., Strategies and Therapies for Wound Healing: A Review. Curr. Drug Targets, 23: 87-98 (2022).
[12] Sadeghi-Aghbash M., Rahimnejad  M., Adeli H., Feizi F., Fabrication and Development of PVA/Alginate Nanofibrous Mats Containing Arnebia Euchroma Extract as a Burn Wound Dressing, React. Func. Polym., 181: 105440 (2022) .
[13] Moon J.J., Saik J.E., Poche R.A., Leslie-Barbick J.E., Lee S.H., Smith A.A., Dickinson M.E., West J.L., Biomimetic Hydrogels with Pro-Angiogenic Properties. Biomaterials, 31: 3840-3847 (2010).
[14] Chu H., Wang, Y. Therapeutic Angiogenesis: Controlled Delivery of Angiogenic Factors, Ther. Deliv., 3: 693-714 (2012).
[15] Saini H., Navaei A., Van Putten A., Nikkhah M., 3D Cardiac Microtissues Encapsulated with the Co-Culture of Cardiomyocytes and Cardiac Fibroblasts, Adv. Healthcare Mater., 4: 1961-1971 (2015).
[16] Navaei A., Truong D., Heffernan J., Cutts J., Brafman D., Sirianni R.W., Vernon B., Nikkhah M., PNIPAAm-Based Biohybrid Injectable Hydrogel for Cardiac Tissue Engineering, Acta Biomater., 32: 10-23 (2016).
[17] Peela N., Sam F.S., Christenson W., Truong D.,Watson A.W., Mouneimne G., Ros R., Nikkhah M., A Three Dimensional Micropatterned Tumor Model for Breast Cancer Cell Migration Studie, Biomaterials, 81: 72-83 (2016).
[18] Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold Nanorod-Incorporated Gelatin-Based Conductive Hydrogels for Engineering Cardiac Tissue Constructs, Acta Biomater., 2016, 41, 133-146.
[19] Aubin H., Nichol J.W., Hutson C.B., Bae H., Sieminski A.L., Cropek D.M., Akhyari P., Khademhosseini A., Directed 3D Cell Alignment and Elongation in Microengineered Hydrogels, Biomaterials, 31: 6941-6951 (2010).
[20] Navaei A., Moore N., Sullivan R.T., Truong D., Migrino R.Q., Nikkhah, M., Electrically Conductive Hydrogel-Based Micro-Topographies for the Development of Organized Cardiac Tissues, RSC Adv., 7: 3302-3312 (2017).
[21] Nichol J.W., Koshy S., Bae H., Hwang C.M., Yamanlar S., Khademhosseini, A., Cell-Laden Microengineered Gelatin Methacrylate Hydrogels, Biomaterials, 31: 5536-5544 (2010).
[22] Nikkhah M., Eshak N., Zorlutuna P., Annabi N., Castello M., Kim K., Dolatshahi-Pirouz A., Edalat F., Bae H., Yang Y., Khademhosseini, A. Directed Endothelial Cell Morphogenesis in Micropatterned Gelatin Methacrylate Hydrogels, Biomaterials, 2012, 33, 9009-9018.
[24] Hosaka A., Koyam, H., Kushibiki, T., Tabata Y., Nishiyama N., Miyata T., Shigematsu H., Takato T., Nagawa H., Gelatin Hydrogel Microspheres Enable Pinpoint Delivery of Basic Fibroblast Growth Factor for the Development of Functional Collateral Vessels, Circulation, 110: 3322-3328 (2004).
[25] Li Z., Qu T., Ding C., Ma C., Sun H., Li S., Liu X. Injectable Gelatin Derivative Hydrogels with Sustained Vascular Endothelial Growth Factor Release for Induced Angiogenesis, Acta Biomaterialia, 13: 88-100 (2015).
[26] Liu Y., Sun L., Huan Y., Zhao H., Deng J., Application of bFGF and BDNF to Improve Angiogenesis and Cardiac Function, J. Surg. Res., 136: 85-91 (2006).
[27] Takehara N., Tsutsumi Y., Tateishi  K., Ogata T., Tanaka H., Ueyama T., Takahashi T., Takamatsu T., Fukushima M., Komeda, M., Yamagishi M., Yaku H., Tabata, Y., Matsubara, H., Oh, H. Controlled Delivery of Basic Fibroblast Growth Factor Promotes Human Cardiosphere-Derived Cell Engraftment to Enhance Cardiac Repair for Chronic Myocardial Infarction, J. Am. Coll. Cardiol., 52: 1858-1865 (2008).
[28] Nakajima K, Fujita J, Matsui M, Tohyama S, Tamura N, Kanazawa H, Seki T, Kishino Y, Hirano A, Okada M, Tabei R, Sano M, Goto S, Tabata Y, Fukuda K. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function After Myocardial Infarction, PLoS One  10: e0133308 (2015).
[29] Lee, S.H., Lee Y., Chun, Y.W., Crowder, S.W., Young, P.P., Park, K.D., Sung, H.J., In Situ Crosslinkable Gelatin Hydrogels for Vasculogenic Induction and Delivery of Mesenchymal Stem Cells, Adv. Funct. Mater., 24: 6771-6781 (2014).
[30] Loessner D., Meinert C., Kaemmerer E., Martine L.C., Yue K., Levett P.A., Klein, T.J., Melchels F.P.W., Khademhosseini, A., Hutmacher  D.W., Functionalization, Preparation and Use of Cell-Laden Gelatin Methacryloyl–Based Hydrogels as Modular Tissue Culture Platforms, Nat. Protoc., 11: 727-746 (2016).
[31] Lai T.C., Yu, J., Tsai W.B., Gelatin Methacrylate/ Carboxybetaine Methacrylate Hydrogels with Tunable Crosslinking for Controlled Drug Release, J. Mater. Chem. B  4; 2304-2313 (2016).
[32] Paul A., Hasan A., Kindi H.A., Gaharwar A.K., Rao V.T.S., Nikkhah M., Shin S.R., Krafft D., Dokmeci M.R., Shum-Tim D., Khademhosseini A., Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair, ACS Nano, 8: 8050-8062 (2014).
[33] Sun X., Zhao X., Zhao L., Li Q., D’Ortenzio M., Nguyen B., Xu, X., Wen Y., Development of a Hybrid Gelatin Hydrogel Platform for Tissue Engineering and Protein Delivery Applications, J. Mater. Chem. B, 14: 6368-6376 (2015).
[34] Sharma A., Mittal A.,  Puri V., Kumar  P.,  Singh I., Curcumin-Loaded, Alginate–Gelatin Composite Fibers for Wound Healing Applications. 3 Biotech, 10: 464 (2020).
[36] Li C., Mu C., Lin W., Novel Hemocompatible Nanocomposite Hydrogels Crosslinked with Methacrylated Gelatin, RSC Adv., 6: 43663-43671 (2016).
[37] امیدی  مرضیه، شجاع الساداتی سید عباس، مرسلی علی، بررسی بارگذاری و رهایش کنترل شده یک داروی ضد آریتمی قلبی در یک چارچوب فلز- آلی، نشریه شیمی و مهندسی شیمی ایران، (2)33: 21 تا 25 (1393).
[38] عبداللهی پیونوندی میترا، ابراهیمی رجبعلی، امیری افسانه، بررسی بارگذاری و رهایش داروی فلووکسامین در هیدروژل ساخته شده با فراصوت دهی، مجله علوم و تکنولوژی پلیمر، (3)27: 225 تا 232 (1394).
[39] رضانژاد بردجی قاسم، حسینی سمانه السادات، سنتز هیدروژل نانوکامپوزیت آهن و بررسی رهایش داروی ضدسرطان دوکسوروبیسین،  نشریه شیمی و مهندسی شیمی ایران، (1)38: 78 تا 67 (1398).
[40] Rezanejade G,   Asgari B.S.,  Mirshokraie S. A., Submicron Particles of Double Network Alginate/Polyacrylamide Hydrogels for Drug Delivery of 5-Fluorouracil, Iran. Chem. Chem Eng., 40 (5): 1386-1394 (2021).
[41] Li X., Li Y.,  Wang  M., Meng, F.,  Huang J.,  Yu, R.,  Wang Y.,  Liu H. H., Preparation, In-Vitro Evaluation, and Delivery of Colchicine Via Polyacrylamide Hydrogel, Iran. Chem. Chem Eng., 41 (8): 2595-2606 (2022).
[43] Bello A.B.,  Kim D., Kim D.,  Park H.,  Lee S.H.,  Engineering and Functionalization of Gelatin Biomaterials: from Cell Culture to Medical Applications, Tissue Eng. Part B Rev.,  26: 164-180 (2020).
[44] Das S., Chaudhury A., Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery, Aaps. Pharmscitech., 12: 62-76 (2011).
[46] van Harten J., Duchier J., Devissaguet J.P., van Bemmel P., de Vries M.H., Raghoebar M., Pharmacokinetics of Fluvoxamine Maleate in Patients with Liver Cirrhosis After Single-Dose Oral Administration, Clin. Pharmacokinet., 24:177-182 (1993).
[47] Satapathy M.K., Chiang W.H., Chuang E.Y., Chen C.H., Liao J.L., Huang H.N., Microplasma-Assisted Hydrogel Fabrication: A Novel Method for Gelatin-Graphene Oxide Nano Composite Hydrogel Synthesis for Biomedical Application, Peer J, , 5: e3498 (2017).
[49] Imtiaz, N., Khan Niazi, M.B., Fasim, F., B.A., Khan, Bano, S.A., Shah, G.M., Badshah, M., Menaa F., Uzair, B., Fabrication of an Original Transparent PVA/Gelatin Hydrogel: In Vitro Antimicrobial Activity against Skin Pathogens , Int. J. Polym. Sci., 2019, Article ID 7651810.
[50] Thangprasert A., Tansakul C., Thuaksubun N., Meesane J., Mimicked Hybrid Hydrogel Based on Gelatin/PVA for Tissue Engineering in Subchondral Bone Interface for Osteoarthritis Surgery, Mater. Des., 183: 108113 (2019).
[51] Peppas N.A., Zach Hilt J., Khademhosseini A., Langer R., Hydrogels in Biology and Medicine: from Molecular Principles to Bionanotechnology, Adv. Mater. 18: 1345-1360 (2006).
[52] Ganji F., Vasheghani E., Hydrogels in Controlled Drug Delivery Systems, Iran. Polym. J., 18, 63-88 (2009).