Spectrophotometric Determination and D-Optimal Design Optimization for Pre-Concentration and Separation of the Mixture of Acenaphthene and Pyrene Using Nano-Cobalt Ferrite Oxide Modified by Aspartic Aacid

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, Arak University, Arak. Iran

Abstract

A fast, simple, inexpensive, sensitive, efficient, and environment-friendly magnetic solid phase extraction (MSPE) procedure has been developed to concentrate two polycyclic aromatic hydrocarbons (Acenaphthene and Pyrene) from water samples prior to quantification by UV-vis spectrophotometric. CoFe2O4 nanoparticles modified by aspartic acid have been synthesized by co-precipitation processes.  This adsorbent was analyzed by FT-IR spectroscopy, SEM, and XRD methods. A D-optimal design was used for optimizing the factors and evaluating their influence upon extraction. The optimum experimental conditions were: pH= 3; sorbent dosage= 15 mg; Acenaphthene concentration = 150(µg/L); Pyrene concentration =400(µg/L). Under the experimental conditions, the method presents a good level of relative standard deviation for Acenaphthene and Pyrene, 2.9% and 3.1 % (n = 9; spiking level 5 mg/L) respectively. The detection limit for the Acenaphthene and Pyrene with 9 times measuring was 34 and 25 (µg/L) and the quantities limit was 84 and 114 (µg/L), respectively. Finally, the proposed method was applied to the analysis of four types of water samples, tap water, well water, river water, and effluent wastewater. The samples were previously analyzed and confirmed free of target analytes. At 50 (µg/L) spiking level recovery, values ranged between 80 and 90% for effluent wastewater samples showing that the matrix had a negligible effect upon extraction. 

Keywords

Main Subjects


[1] Bai D., Li J., Chen S. B., Chen B. H., A Novel Cloud-Point Extraction Process for Preconcentrating Selected Polycyclic Aromatic Hydrocarbons in Aqueous Solution. Environmental science & technology, 35(19): 3936-3940 (2001).
[5] Zhang Y., Tao S., Global Atmospheric Emission Inventory of Polycyclic Aromatic Hydrocarbons (PAHs) for 2004, Atmospheric Environment, 43(4): 812–819 (2009).
[6] Zheng G. J., Richardson B. J., Petroleum Hydrocarbons and Polycyclic Aromatic Hydrocarbons (PAHs) in Hong Kong Marine Sediments. Chemosphere, 38(11): 2625-2632 (1999).
[7] Paxéus N.,  Organic Pollutants in the Effluents of Large Wastewater Treatment Plants in Sweden, Water Research, 30: 1115-1122 (1996).
[9] King S., Meyer J.S, Andrews A.R.J, Screening Method for Polycyclic Aromatic Hydrocarbons in Soil Using Hollow fiber Membrane Solvent Microextraction, J. Chromatogr. A, 982: 201-208 (2002).
[10] Oliferova L.,  Statkus M.,  Tsysin G.,  Shpigun O.,  Zolotov Y., On-Line Solid-Phase Extraction and HPLC Determination of Polycyclic Aromatic Hydrocarbons in Water Using Fluorocarbon Polymer Sorbents, Analytica Chimica Acta, 538: 35-40 (2005).
[11] Rezaee M., Assadi Y.,  Milani Hosseini M.R., Aghaee E., Determination of Organic Compounds in Water Using Dispersive Liquid–Liquid Microextraction, J. Chromatogr. A, 1116: 1-9 (2006).
[16] Abdar A., Sarafraz-Yazdi A., Amiri A., Magnetic Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons in water Samples by Fe3O4@Polypyrrole/Carbon Nanotubes, Journal of Separation Science, 39: 2746-2753 (2016).
[17] Nurerk P., Kanatharana P., Polyaniline-Coated Magnetite Nanoparticles Incorporated in Alginate Beads for the Extraction and Enrichment of Polycyclic Aromatic Hydrocarbons in Water Samples, International Journal of Environmental Analytical Chemistry, 1-14 (2017).
[18] Chanda S., Mehendale H. M., "Encyclopedia of Toxicology (Second Edition)",  Elsevier (2005).
[19] Nerín C., Focus on Sample Handling, Anal. Bioanal. Chem., 388(5): 1001-1002 (2007).
[20] Mitra S., Bruhkn R., “Sample Preparation Techniques in Analytical Chemistry”, Wiley, newjersey, (2003).
[21] کیخوائی، مسعود؛ رحمانی، ماشاالله؛ مهرپور، مریم، اندازه­گیری اسپکتروفوتومتری مقدارهای بسیار ناچیز پالادیوم در نمونه های آبی با فناوری یک مرحله­ای میکرواستخراج مایع-مایع پخشی در سرنگ، نشریه شیمی و مهندسی شیمی ایران ، (3)35: 87 تا 97 (1390).
 [22] قلی پور، نازیلا؛ رحیمی نصر آبادی، مهدی؛ لرکی، آرش، اندازه­گیری اسپکتروفتومتری تتریل پس از پیش تغلیظ به روش میکرواستخراج مایع-مایع پخشی، نشریه شیمی و مهندسی شیمی ایران ، (4)39: 127 تا 136 (1399).
[23] Yang P., Chen.W., Wang Ch,, Preparation and in Vitro Cytotoxicity Study of Poly (Aspartic Acid) Stabilized Magnetic Nanoparticles, Chem. China., 6(1): 9-14 (2011).
[26] Zolgharnein J., Choghaei Z., Bagtash M., Feshki Sh., Rastgordani M., Zolgharnein P., Nano-Fe3O4 and Corn Cover Composite for Removal of Alizarin Red S from Aqueous Solution: Characterization and Optimization Investigations‏, Desalination and Water Treatment, 57(57): 27672-27685 (2016).
[28] Wan s., Zheng Y., Liu Q., Yan H.,  Liu L., Fe3O4 Nanoparticles Coated with Homopolymers of Glycerol Mono(Meth)Acrylate and Their Block Copolymers, J. Mater. Chem., 15: 3424-3430 (2005).
[29] Ma M., Zhang Y.,  Yu W.,  Preparation and Characterization of Magnetite Nanoparticles Coated by Amino Silane, Colloids Surf. A Physicochem. Eng. Asp., 212: 219-226 (2003).
[30] سیدذوالفقار، سعید؛ نعیم پور، فرشته؛ راسخ، بهنام، ترکیبات پلی سیکلیک آروماتیک و توانایی قارچ­ها در حذف آنها از خاک ، اولین کنفرانس پتروشیمی ایران، (1387).
[31] Khodova L.G., Korotaeva E.A., Quantitative Determination of Compounds in Model Acenaphthene-Pyrene Mixtures, Journal of Structural Chemistry, 36(2): 343-348 (1995).
[32] Aygu¨n S. F., Kabadayi F., Determination of Benzo[a]Pyrene in Charcoal Grilled Meat Samples by HPLC with Fluorescence Detection, International Journal of Food Sciences and Nutrition, 56(8): 581-585 (2005).
[35] Al-Duri B.,  Mckay G., Prediction of Binary Systems for Kinetics of Batch Adsorption Using Basic Dyes onto Activated Carbon. Chemical engineering science, 46(1): 193-204 (1991).
[36] Shibata Sh.,  Goto K.,  Ishiguro Y., Dual-Wavelength Spectrophotometry: Part III. Determination of Arsenazo I in Arsenazo III, Anal. Chim. Acta., 62(2): 305-310 (1972).
[37] Ratzlaff K.L., Natusch D.F.S., Theoretical Assessment of Precision  in Dual Wavelength Spectrophotometric Measurement, Anal. Chem., 49(14): 2170–2176 (1977).
[38] Cerda V., Phansi P., Ferreira S., From Mono- to Multicomponent Methods in UV-VIS Spectrophotometric and Fluorimetric Quantitative Analysis - A Review, TrAC Trends in Analytical Chemistry, 157: 116772 (2022).
[39] Thomas O., Brogat M., " UV Spectra Library (Chapter 12)",  UV-Visible Spectrophotometry of Water and Wastewater (Second Edition), Elsevier (2017).
[40] کیخوائی، مسعود؛ میرمحمدی صدر آبادی، سمانه، کاربرد میکرواستخراج فاز مایع از فضای بالایی- کروماتوگرافی گازی برای تعیین مقدارهای بسیار ناچیز ایزو آمیل استات، نشریه شیمی و مهندسی شیمی ایران، (2)30: 79 تا 87 (1390).
[41] Martín, M., Salazar, P., Villalonga, R., Campuzano, S., Pingarrón, J. M., González-Mora, J. L., Preparation of Core–Shell Fe3O4@Poly(Dopamine) Magnetic Nanoparticles for Biosensor Construction, J. Mater. Chem. B, 2(6): 739-746 (2014).
[44] Basak M., Rahman M. L., Ahmed M. F., Biswas B., Sharmin N., Calcination Effect on Structural, Morphological and Magnetic Properties of Nano-Sized CoFe2O4 Developed by a Simple co-Precipitation Technique. Materials Chemistry and Physics, 264: )2021).
[45] Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S.,  Escaleira, L. A., Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry, Talanta, 76(5): 965-977 (2008).
[46] Atkinson, A. C., Tobias, R. D., Optimal Experimental Design in Chromatography, J. Chromatogr. A, 1177(1): 1-11 (2008).
[49] Ba-Abbad M.M, Kadhum  A.A.H, Mohamad  A.B, Takriff M.S, Sopian K, Optimization of Process Parameters Using D-Optimal Design for Synthesis of ZnO Nanoparticles Via Sol–Gel Technique, J. Ind. Eng. Chem. 19(1): 99-105 (2013).
[51] Eshaghi Z., Khooni M.,  Heidari A., Determination of Brilliant Green from Fish Pond Water Using Carbon Nanotube Assisted Pseudo-Stir Bar Solid/Liquid Microextraction Combined with UV–Vis Spectroscopy-Diode Array Detection, Spectrochimica Acta part a: Molecular and Biomolecular Spectroscopy, 79: 603-607 (2011).
[55] Andersson T.A., Hartonen K.M., Riekkola M.L., Solubility of Acenaphthene, Anthracene, and Pyrene in Water At 50 °C to 300 °C, J. Chem. Eng. Data, 50: 1177-1183 (2005).