Process Hazard Identification and Quantitative Risk Assessment in Critical Facilities of a Gas Compressor Station

Document Type : Research Article

Authors

Faculty of Chemical, Oil and Gas Engineering, University of Science and Technology, Tehran, I.R. IRAN

Abstract

In this study, a systematic approach is introduced for process hazard Identification and dynamic risk assessment focusing on the process equipment failure as well as control and instrument facilities in a typical gas compressor station. The survey was initially performed via HAZOP analysis for the main process facilities of the case study. Then, the Bow-Tie analysis was proposed as a combination of fault tree and event tree. Because of the static nature of these conventional risk assessment methods and the limitations such as uncertainty in modeling casual relationships between components, this study proposes a dynamic approach using Bayesian networks for safety risk assessment of gas compressor stations. Critical points in the unit were identified after updating the probability of the main event occurrence using sensitivity analysis. The HAZOP results showed that the compressor node had a high potential for loss of containment or compressor failure. The evaluation of human error is also performed using specific data. The results of the quantitative risk assessment show that the probability of compressor damage due to surge conditions is equal to 2.163 × 10-3. It is also found that the probability of jet fire and flash fire is equal to 1.51E-6 and 9.58E-6. The bow tie was mapped to the Bayesian network for dynamic risk assessment. After setting the new evidence, the probabilities of intermediate events and basic events were updated. Sensitivity analysis using the ROV criterion showed that compressor protection system failure, anti-surge control valve failure, and the events associated with the compressor strainer were the main contributors. Finally, suggestions were made to improve the unit's safety and reduce its risk.

Keywords

Main Subjects


[1] حیرانی پ.، بقایی علی.، ارزیابی ریسک خطوط لوله انتقال نفت و گاز بر مبنای روش بوتای فازی شده، نشریه بهداشت و ایمنی کار، (1)6: 59 تا 70 (1395)
[2] Fioravanti A., De Simone G., Carpignano A., Ruzzone A., Mortarino G., Piccini M., "Compressor Station Facility Failure Modes: Causes, Taxonomy and Effects". European Commission, Joint Research Centre (JRC), (2020)
[7] Chaurasia K., Patankar A., Case Study of Relief Analysis of Compressor Stations, "Mary Kay O'Connor Process Safety Center. Int. Process. Saf. Symp", Octobr 25-27, College Station, TEX, (2016).
[8] Koulinas G., K., Demesouka O.E., Bougelis G.G., Koulouriotis D.E., Risk Prioritization in a Natural Gas Compressor Station Construction Project Using the Analytical Hierarchy Process, Sustainability, 14(20): p13172 (2022).
[9] Pittman W., Heaney C., Scoggins J., Hazard Mapping Case Study on a Compressor House, "Mary Kay O'Connor Process Safety Center. Int. Process. Saf. Symp", Octobr 25-27, College Station, TEX, (2018).
[11]  Zhu X.-P., Liang W., Shi G., A Quantitative Comprehensive Safety Evaluation Method for Centrifugal Compressors Using FMEA-fuzzy Operations, "Int. Symp. Instr. Meas. Sens. Net. Aut.(IMSNA)", December 23-24, Torento, ONT (2013).
[12] Zhu J.F., Fault Tree Analysis of Centrifugal Compressor,. J. Key. Eng. Mat474(2): 1587-1590 (2011).
[13] Acton M.R., Cleaver R.P., Baldwin P.J., McCollum D.J., Methods for Assessing Risks at Above Ground Installations. " ASME Int. Pip. Conf .", October 4–8, Calgary, Alb ( 2004).
[14] Cleaver R.P., Maycock  K., Halford A.R., Potts S.J., McCollum D.J., Sadd A. W.T., Acton M.R. Risk Evaluation at Natural Gas Compressor Stations and Above Ground Installations, " ASME Int. Pip. Conf.", September 24–28, Calgary, Alb (2012).
]15[ اصفهانی ح.، کاربرد تحلیل درخت خطا 1 در یک واحد تقویت فشار گاز، "همایش ملی مهندسی ایمنی و مدیریت HSE"، هجدهم اسفند، تهران، ایران (1388).
]16[ خاتمی فیروزآبادی س.ع.، خرم‌روز ع.، تعیین نقاط حساس نشتی در ایستگاههای تقویت فشار گاز با استفاده از تحلیل درخت خطا، فصلنامه مطالعات مدیریت صنعتی (2)8: 46 تا 70 (1385).
[17] Mocellin P., De Tommaso J., Vianello Ch., Maschio G., Saulnier-Bellemare Th., Virla L.D., Patience G.S., Experimental Methods in Chemical Engineering: Hazard and Operability Analysis—HAZOP, Chem. Eng, 100(12): 3450-3469 (2022).
[18] Puello J., Gómez S., Ruiz I., Lombana S., Figueroa S., Application of HAZOP, LOPA and SIL to an Alkylation Unit in a Refinery: A Case Study. Chemical Engineering Transactions, Chem. Eng. Trasacation(CEt), 82: 343-348 (2020).
[19] Riad B., Elarkam M., Ilhem B., Hayett A., Risk Asseessment For LPG Storage Tanks Area In Skikda Refinery-ALGERIA Using D-Higraph And Hazop Methods & Simulation Of Dangerous Scenarios Using ALOHA Software, "IEEE. Int. Conf. Ele.l Eng (ICEE)", September 25-27, Istanbul, Turk (2020).
[20] Zerrouki H., Risk Assessment of a Liquefied Natural Gas Process Facility Using Bow‐Tie and Bayesian Networks, AIChE. Process. Saf. Prog, 41(3): 480-491 (2022).
[21] Hosseini N., Givehchi S., Maknoon R., Cost-Based Fire Risk Assessment in Natural Gas Industry by Means of fuzzy FTA and ETA, Int. J. Loss. Prev. Process. Ind, 63: 104025 (2020).
[22] Domínguez R., Gomez C., Cerezo O.. Risk Analysis Based on ETA, FTA and Bowtie Methodologies for the Bulk Coal Discharge Process. in Advances in Safety Management and Human Performance, " Springer. Int. Conf. Appl. Hum. Fact. Ergonom ( AHFE)", July 25-29, USA (2021)
[23] Pirbalouti R.G., Karimi Dehkordi M.R., Mohammadpour J., Zarei E., Yazdi M., An Advanced Framework for Leakage risk Assessment of Hydrogen Refueling Stations Using Interval-Valued Spherical Fuzzy Sets (IV-SFS). Int. J.Hyd. Enrg, (2023).
]24[ برقعی پور ه.، منظمی تهرانی غ.، عباس‌زاده تهرانی ن.، نصیری لمر س.، نکویی اصفهانی آ.، محمد فام ا.، ارزیابی و مدیریت ریسک خطرات HSE واحد کلرزنی نیروگاه سیکل ترکیبی با استفاده از روش‌های HAZOP و Bow-Tie،  فصلنامه بهداشت کار و ارتقا سلامت، (2)3: 134 تا 145 (1398).
[25] Rostamabadi A., Jahangiri M., Zarei E., Kamalinia M., Alimohammadlou M., A Novel Fuzzy Bayesian Network approach for safety analysis of process Systems; An Application of HFACS and SHIPP Methodology, J.Clean. Prod., 244: 118761 (2020).
[26] Zarei E., Azadeh A., Mirzaei Aliabadi M., Mohammadfam I., Dynamic Safety Risk Modeling of Process Systems Using Bayesian Network, AIChE, Process. Saf. Prog., 36(4): 399-407 (2017).
[27] Zarei E., Azadeh A., Kkakzad N., Mirzaei Aliabadi M., Mohammadfam I., Dynamic Safety Assessment of Natural Gas Stations Using Bayesian Network, J. hazard. mater., 321: 830-840 (2017).
[28] Khakzad N., Khan F., Amyotte P., Safety Analysis in Process Facilities: Comparison of Fault Tree and Bayesian Network Approaches, Reliab. Eng. Sys. Saf., 96(8): 925-932 (2011).
[29] Macdonald D., "Practical Hazops, Trips and Alarms". Elsevier (2004)
[31] Ferdous R., Khan h.F., Sadiq R., Amyotte P., Veitch B., Analyzing System Safety and Risks Under Uncertainty Using a Bow-Tie Diagram: An Innovative Approach, Process. Saf. Environ. Prot., 91(1-2): 1-18 (2013).
]32[ مسعودی آشتیانی ا.، برادران س.، کاظمی‌آشتیانی ی.، فاتحی آ.، پولادی ب. نجومی ع.، همتی م.، تعیین و ارزیابی سطح بی‌نقصی ایمنی، انتشارات سازمان جهاد دانشگاهی تهران، ص. 109 (1396).
[33] Schüller J.C.H., Brinkman, J.L., Van Gestel  P.J., van Otterloo R.W., "Methods for Determining and Processing Probabilities". Committee for Prevention of Disasters Second edition, The Hague. The Netherlands (2005)
[34] SINTEF. "Offshore Reliability Data Handbook". OREDA participants ( 2015)
[35] Swain A., Guttmann H., "Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications". NUREG/CR-1278. USNRC Washington. (1983)
[36] Domínguez R., Gomez C., Cerezo O., Risk Analysis Based on ETA, FTA and Bowtie Methodologies for the Bulk Coal Discharge Process, "Springer.Int. Conf. App. Hum. Fact. Ergon.(AHFF)", July 25-29, USA (2021).
[37] Pouyakian M., Javad Jafari M., Laal F., Nourai F., Zarei E., A Comprehensive Approach to Analyze the Risk of Floating Roof Storage Tanks, Process. Saf. Environ. Prot., 146: 811-83 (2021).
[38] Zarei E., Khakzad N., Cozzani V., Reniers G., Safety Analysis of Process Systems Using Fuzzy Bayesian Network (FBN), J. loss. prev. process indu., 57: 7-16 (2019).
[39] Malika M., Bouzaouit A., Lakhdar K., Bennis O., Transformation of Fault Tree Into Bayesian Network Methodology for Fault Diagnosis. J. Mechanics., 23(6): 891-899 (2017).
[40] International Association of Oil and Gas Producers. "Risk Assessment Data Directory—Ignition Probabilities". London, UK. (2010).
[41] Rausand M., "Reliability of Safety-Critical Systems: Theory and Applications". John Wiley & Sons, University of Science and Technology Trondheim, Norway (2014).