Chitosan-Based Nanocarriers For The Release Of The Anticancer Drug Curcumin: A Review

Document Type : Review Article

Authors

1 Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

2 Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

3 Department of Chemistry, Shahre-Qods Branch, Islamic Azad University, Shahre-Qods, Tehran, Iran.

Abstract

Curcumin is a yellow polyphenol extracted primarily from the plant Curcuma longa, but also from several other members of the ginger family.Many nanoscale systems have been extensively used for drug loading and release to get around curcumin's low bioavailability and aqueous solubility, highlight its functional properties, and broaden its applications in the pharmaceutical industry.Chitosan has been used as a natural biopolymer extensively for many years. Its polycationic properties, biocompatibility, biodegradability, non-toxicity, and lack of allergenicity all led to studies on it. The main focus in the discovery of curcumin involves its anti-cancer properties. It is well known that curcumin inhibits the signal transmission of cancer cell growth and thus angiogenesis and also causes tumor cell apoptosis. The modification of chitosan for various applications can be easily achieved due to the abundant active groups (NH2 and OH) in the main chainFor the release of curcumin, numerous chitosan-based nanocarriers with distinct properties have been developed, including nanocomposites, nanoemulsions, nanotubes, and nanofibers. The controlled release of the drug is to maintain the optimal therapeutic concentration of the drug in the blood, which increases the shelf life and duration of activity of drugs with a short half-life. Controlled drug release makes the drug release rate predictable and repeatable for prolonged release drugs. Therefore, the development of colloidal systems for curcumin release encapsulation is a promising strategy to overcome the limitations of drug release. The physical and chemical characteristics of chitosan-based nanocarriers, including surface charge, morphology, encapsulation driving force, and release characteristics, are examined in this study and the effectiveness of chitosan-based nanocarriers for pharmaceutical applications is determined by these characteristics.

Keywords

Main Subjects


[2] Ghomi E.R., KhosraviF,. NeisianyR.E., ShakibaM.R., Zare M., Lakshminarayanan R., Chellappan V., Abdouss M., Ramakrishna S., Advances in Electrospinning of Aligned Nanofiber Scaffolds Used for Wound Dressings, Curr. Opin. Biomed. Eng., 22: 100393 (2022).
[3]Hosseini S.M., Mazinani, S., Abdouss, M ., Designing Chitosan Nanoparticles Embedded Into Graphene Oxide as a Drug Delivery System, Polym. Bull., 79: 541–554 (2022).
[4] Maghsoodi V., Yaghmaei S., Beigi S.M., Influence of Different Nitrogen Sources on Amount of Chitosan Production by Aspergillusniger in Solid State Fermentation, Iran. Chem. Chem. Eng. (IJCCE), 27(1): 47-52 (2008).
[5] Hasani M., Abdouss M., Shojaei S., Nanocontainers for Drug Delivery Systems: A Review of Halloysite Nanotubes and Their PropertiesInt J Artif Organs.,44(6): 426-433 (2021).
[7] Mosselhy D.A., Ge Y., Gasik M., Nordström K., Natri O., Hannula S-P., Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action, J. Materials., 9: 170–186 (2016).
[9]Ghasemi A.S.,Makiabadi B.,Zakarianezhad M.,Soltani A ., Ashrafi  F ., Farideh Mashhadban F., Experimental and Theoretical Studies of the Interaction of Penicillamine with SWCNT (6,0) as a Drug Delivery System. Inorg. Nano-Met. Chem., 31: 153-172 (2022).
[11]Ghasemi, A.S., Mashhadban, F., Ravari, F., A DFT Study of Penicillamine Adsorption Over Pure and Al-Doped C60 FullereneAdsorption, 24: 471-480 (2018).
[12]Mostafavi M., Tanreh S., Astaraki M., Farjah B., Rasoolidanesh M., Rezvani M,, Ganji M.D., Dispersion‒Corrected DFT Investigations on the Interaction of Glycine Amino Acid with Metal Organic Framework MOF-5, Physica B: Condensed Matter., 626: 413446 (2022).
[13]Sabet M., Tanreh T., Khosravi A., Astaraki M., Rezvani M., Darvish D.G., Theoretical Assessment of the Solvent Effect on the Functionalization of Au32 and C60 Nanocages with fluorouracil drug, Diam. Relat. Mater., 126: 109142 (2022).
[15] Meynen V., Cool P., Cool Vansant P., Verified SYNTHESES of Mesoporous Materials, Micropor. Mesopor. Mat., 125: 170–223 (2009).
[16] Vazquez N.I., Gonzalez Z., Ferrari B., Castro Y., Synthesis of Mesoporous Silica Nanoparticles by Sol–Gel as Nanocontainer for Future Drug Delivery Applications, Boletín de la Sociedad Española de Cerámica y Vidrio. In press (2017).
 [17] Brady R., Woonton B., Gee M.L., O'Connor A.J. Hierarchical Mesoporous Silica Materials for Separation of Functional Food Ingredients – A Review, Innov. Food. Sci. Emerg. Tech., 9: 243-248 (2008).
[18] Popat A., Hartono S.B., Stahr F., Liu J., Qiao S.Z., Lu GQM., Mesoporous Silica Nanoparticles for Bioadsorption, Enzyme Immobilisation, and Delivery Carriers, Nanoscale, 3: 2801-2818 (2011).
[19] Gonzalez G., Sagarzazu A., Zoltan T., Infuence of Microstructure in Drug Release Behavior of Silica Nanocapsules. J. Drug. Del., 2013: 1-8 (2013).
[20] Bouchoucha M., Côté M.F., C.-Gaudreault R., Fortin M.A., Kleitz F., Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chem. Mater., 28(12): 4243-4258 (2016).
[22] Rinaudo M., Chitin and Chitosan: Properties and Applications, Prog. Polym. Sci., 31(7): 603-632 (2006).
[23] Kim H., Tator C.H., Shoichet M.S., Chitosan Implants in the Rat Spinal Cord: Biocompatibilityand Biodegradation, J. Biomed. Mater. Res., 97(4): 395-404 (2011).
[24] Kean T., Thanou M., Biodegradation, Biodistribution and Toxicity of Chitosan, Adv.Drug Deliv. Rev., 62 (1): 3-11(2010).
[25] Qu B., Luo Y., Chitosan-Based Hydrogel Beads: Preparations, Modifications and Applicationsin Food and Agriculture Sectors–A Review, Int. J. Biol. Macromol., 152: 437-448 (2020) .
[26] Rajan S.S., Pandian A., Palaniappan T., Curcumin Loaded in Bovine Serum Albumin–Chitosan Derived Nanoparticles for Targeted Drug Delivery, Bull. Mater. Sci., 39(3): 811-817(2016).
[27] Facchi S.P., Scariot D.B., Bueno P V., Souza P.R., Figueiredo L.C., Follmann H.D., Nunes C.S., Monteiro J.P., Bonafé E.G., Nakamura C.V., Preparation and Cytotoxicity of N-Modified Chitosan Nanoparticles Applied in Curcumin Delivery, Int. J. Biol.Macromol., 87: 237-245(2016).
[28] Chuah L.H., Roberts C.J., Billa N., Abdullah S., Rosli R., Cellular Uptake and Anticancereffects of Mucoadhesive Curcumin-Containing Chitosan Nanoparticles, Colloids Surf.B: Biointerfaces., 116 :228-236(2014)
[29] Chuah L.H., Billa N., Roberts CJ., Burley J.C., Manickam S., Curcumin-Containing Chitosannanoparticles as a Potential Mucoadhesive Delivery System to the Colon, Pharm. Dev. Technol., 18 (3): 591-599(2013).
[30] Anitha A., Sreeranganathan M., Chennazhi K.P., Lakshmanan V.K., Jayakumar R ., Invitro Combinatorial Anticancer Effects of 5-Fluorouracil and Curcumin Loaded N, Ocarboxymethylchitosan Nanoparticles Toward Colon Cancer and in Vivo Pharmacokineticstudies, Eur. J. Pharm. Biopharm., 88(1): 238-251(2014).
[31] Alkhader E., Roberts C.J., Rosli R., Yuen K.H., Seow E K., Lee Y Z., Billa N., Pharmacokineticand Anti-Colon Cancer Properties of Curcumin-Containing Chitosanpectinatecomposite Nanoparticles, J. Biomater. Sci. Polym. Ed., 29(18): 2281-2298(2018).
[32] Duse L., Baghdan E., Pinnapireddy SR., Engelhardt K.H., Jedelská J., Schaefer J., Quendt P., Bakowsky U., Preparation and Characterization of Curcumin Loaded Chitosannanoparticles for Photodynamic Therapy, Phys. Status Solidi., A 215(15): 1700709(2018).
 [33] Khatun B., Banik N., Hussain A., RamtekeA., Maji T., Genipin Crosslinked Curcumin Loaded Chitosan/Montmorillonite K-10 (MMT) Nanoparticles for Controlled Drug Delivery Applications, J. Microencapsul., 35(5): 439-453(2018).
[34] Hashemian M., Anissian D., Kasman M. G., Akbari A., Fomeshi M K., Ghasemi S., Ahmadi A.A., Moghadamnia A., Ebrahimpour A., Curcumin-Loaded Chitosan-Alginate-STPP Nanoparticles Ameliorate Memory Deficits and Reduce Glial Activation in Pentylenetetrazol-Induced Kindling Model of Epilepsy, Prog. Neuro-Psychopharmacol. Biol., Psychiatry, 79: 462-471(2017).
[35] Fan Y., Yi J., Zhang Y., Yokoyama W., Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate, J. Agric. Food Chem., 65 (49): (10812–10819 (2017).
[36] Ahmadi F., Kasman M. G., Ghasemi S., Tabari M G., Pourbagher R., Kazemi S., Mir A. A., Induction of Apoptosis in Hela Cancer Cells by an Ultrasonicmediated Synthesis of Curcumin-Loaded Chitosan–Alginate–sTPP Nanoparticles, Int. J. Nanomedicine., 12: 8545 (2017).
[37] Hafez SM., Hathout R. M., Sammour O.A., Tracking the Transdermal Penetration Pathways of Optimized Curcumin-Loaded Chitosan Nanoparticles Via Confocal Laser Scanning Microscopy, Int. J. Biol. Macromol., 108:753-764(2018).
[38] Luo Y., Zhang B., Cheng W. H., Wang Q., Preparation, Characterization and Evaluation of Selenite-Loaded Chitosan/TPP Nanoparticles with or Without Zein Coating, Carbohydr. Polym., 82(3): 942–951(2010)
[39] Nair R.S., Morris., Billa N., Leong C.O., An Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles for Transdermal Delivery., AAPS PharmSciTech., 20(2): 69(2019).
[40] Zelenak V., Hornebecq V., Llewellyn P., Zinc(II)-Benzoato Complexes Immobilised in Mesoporous Silica Host, Micropor. Mesopor. Mat., 83: 125-135 (2005).
[41] Izquierdo-Barba I., Martinez A., Doadrio A.L., Perez-Pariente J., Vallet-Regi M., Release Evaluation of Drugs from Ordered Three-Dimensional Silica Structures, J. Pharm. Sci., 26: 365–373 (2005).
 [42] Huang X., Young N.P., Townley H.E.,Characterization and Comparison of Mesoporous Silica Particles for Optimized Drug Delivery, J.Nanomater. Nanotech., 4: 1–15 (2014).
[43] Zhai Q.Z., Wu Y-Y., Wang X-H., Synthesis, Characterization and Sustaining Controlled Release Effect of Mesoporous SBA-15/Ramipril Composite Drug, J. Incl. Phenom. Macrocycl. Chem., 77:113-120.
 [44] Singh R.K., Kim T-H., Mahapatra C., Patel K-D., Kim H-W., Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. Langmuir, 31 (41): 11344–11352 (2015).
[45] Bahrami Z., Badiei A., Surface F., Functionalization of SBA-15 Nanorods for Anticancer Drug Delivery, Chem. Eng. Res. Des., 92: 1296-1303 (2014).
[46] Tao J., Xu Y., Zhou G.Z., Wu C., Song H., Wang Ch., Ordered Mesoporous SBA-15 for Controlled Release of Water-Insolube Drug., Adv. Mat. Res., 236: 1873-1876 (2011).
[47] Popovici R.F., Seftel E.M., Mihai G.D., Popovici E., Voicu V.A., Controlled Drug Delivery System Based on Ordered Mesoporous Ordered Mesoporous Silica Matrices of Captopril as Angiotensin-Converting Enzyme Inhibitor Drug., J. Pharm. Sci, 100: 704-714 (2011).
[48] Lehto V.P., Vaha-Heikkila K., Paski J., Salonen J., Use of Thermoanalytical Methods in Quantification of Drug Load in Mesoporous Silicon Microparticles, J. Therm. Anal. Calori., 80: 393–397 (2005).
[50] Gomez-Vega J.M., Hozumi A., Sugimura H., Takai O., Ordered Mesoporous Silica Coatings That Induce Apatite Formation In Vitro, Adv. Mater., 13: 822–825 (2001).
[51] Gomez-Vega J.M., Hozumi A., Saiz E., Tomsia A.P., Sugimura H., Takai O., Bioactive GlassMesoporous Silica Coatings on Ti6Al4V Through Enameling and Triblock-CopolymerTemplated Sol-Gel Processing, J. Biomed. Mater. Res., 56: 382–389 (2001).
[52] Bharti C., Nagaich U., Kumar P.A., Gulati N., Mesoporous Silica Nanoparticles in Target Drug Delivery System: A Review, Int. J. Pharm. Investig., 5(3): 124–133 (2015).
[53] Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S., Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications, Nanomed. Nanotech. Biol. Med., 11: 313-327 (2015).
[54] Kralj S., Rojnik M., Kos J., Makovec D., Targeting EGFR-Overexpressed A431 Cells with EGF-Labeled Silica-Coated Magnetic Nanoparticles, J. Nanopar. Res., 15: 1-11 (2013).
[55] Huang X., Li L., Liu T., Hao N., Liu H., Chen D., The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo, ACS Nano., 5: 5390-5399 (2011).
[56] Tang L., Gabrielson N.P., Uckun F.M., Fan T.M., Cheng J., Size-Dependent Tumor Penetration and in Vivo Efficacy of Monodisperse Drug–Silica Nanoconjugates, Molecul. Pharm., 10: 883-92 (2013).
 [57] Pan L., He Q., Liu J., Chen Y., Ma M., Zhang L., Shi J., Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles, J. Am. Chem. Soc., 134: 5722-5725 (2012).
[58] He D., He X., Wang K., Cao J., Zhao Y., A Light-Responsive Reversible Molecule-Gated System Using Thymine-Modified Mesoporous Silica Nanoparticles, Langmuir, 28:4003-8 (2012).
[59] Vallet-Regí M., Nanostructured Mesoporous Silica Matrices in Nanomedicine, J. Int. Med., 267(1): 22–43 (2010).
[60] Xu J.H., Gao F.P., Li L.L., Ma H.L., Fan Y.S., Liu W., Guo S.S., Zhao X.Z., Wang H., Gelatin–Mesoporous Silica Nanoparticles as Matrix Metalloproteinases-Degradable Drug Delivery Systemsin Vivo, Micropor. Mesopor. Mat., 182: 165–172 (2013).
[61] Li X., Tang T., Zhou Y., Zhang Y., Sun Y., Applicability of Enzyme-Responsive Mesoporous Silica Supports Capped with Bridged Silsesquioxane for Colon-Specific Drug Delivery, Micropor. Mesopor. Mat., 184: 83-89 (2014).
[62] Wang X., Miao J., Xia Q., Yang K., Huang X., Zhao W., Shen J., A High-Sensitivity Immunosensor for Detection of Tumor Marker Based on Functionalized Mesoporous Silica Nanoparticles, Electrochimica Acta., 112: 473- 479 (2013).
[63] Kamarudin N.H.N., Jali A.A., Triwahyono S., Salleh N.F.M., Karim A.H., Mukti R.R., Hameed B.H., Ahmad A., Role of 3-Aminopropyltriethoxysilane in the Preparation of Mesoporous Ssilica Nanoparticles for Ibuprofen Delivery: Effect on Physicochemical Properties, Micropor. Mesopor. Mat., 180: 235–241 (2013).
[64] He Q., Shi J., Chen F., Zhu M., Zhang L., An Anticancer Drug Delivery System Based on Surfactant-Templated Mesoporous Silica Nanoparticles, Biomaterials., 31: 3335–3346 (2010).
 [65] He Q., Gao Y., Zhang L., Zhang Z., Gao F., Ji X., Li Y., Shi J., A pH-Responsive Mesoporous Silica Nanoparticles-Based Multi-Drug Delivery System for Overcoming Multi-Drug Resistance, Biomaterials., 32: 7711-7720 (2011).
[67] Jia L., Shen J., Li Z., Zhang D., Zhang Q., Duan C., Liu G., Zheng D., Liu Y., Tian X., Successfully Tailoring the Pore Size of Mesoporous Silica Nanoparticles: Exploitation of Delivery Systems for Poorly Water-Soluble Drugs, Int. J. Pharm., 439: 81–91 (2012).
 [68] Peng H., Dong R., Wang S., Zhang Z., Luo M., Bai C., Zhao Q., Li J., Chen L., Xiong H., A pH-Responsive Nano-Carrier with Mesoporous Silica Nanoparticles Cores and Poly(acrylic acid) Shell-Layers: Fabrication, Characterization and Properties for Controlled Release of Salidroside, Int. J. Pharm.,446: 153–159 (2013).
[69] Qu Y., Feng L., Liu B., Tong C., Changli L., A Facile Strategy for SYNTHESIS of Nearly White Light Emitting Mesoporous Silica Nanoparticles, Colloid. Surface A., 441: 565-571 (2014).
[70] Gu J., Su S., Zhu M., Li Y., Zhao W., Duan Y., Shi J., Targeted Doxorubicin Delivery to Liver Cancer Cells by PEGylated Mesoporous silica Nanoparticles with a pH-Dependent Release Profile, Micropor. Mesopor. Mat., 161: 160–167 (2012).
[71] Tzankov B., Yoncheva K., Popova M., Szegedi A., Momekov G., Mihály J., Lambov N., Indometacin Loading and in Vitro Release Properties from Novel Carbopol Coated Spherical Mesoporous Silica Nanoparticles, Micropor. Mesopor. Mat., 171: 131–138 (2013).
[72] Minati L., Antonini V., Dalla Serra M., Speranza G., Enrichi F., Riello P., pH-Activated Doxorubicin Release from Polyelectrolyte Complex Layer Coated Mesoporous Silica Nanoparticles, Micropor. Mesopor. Mat., 180: 86–91 (2013).
[73] Chung T.H., Wu S.H., Yao M., Lu C.W., Lin Y.S., Hung Y., Mou C.Y. Chen Y.C., DongMing Huang, The Effect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3T3-L1 Cells and Human Mesenchymal Stem Cells, Biomaterial., 28: 2959–2966 (2007).
[74] Sun W., Fang N., Trewyn B.G., Tsunoda M., Slowing I.I., Lin V.S.Y., Yeung E.S., Endocytosis of a Single Mesoporous Silica Nanoparticle into a Human Lung Cancer Cell Observed by Differential Interference Contrast Microscopy, Anal. Bioanal. Chem., 391: 2119– 2125 (2008).
 [75] Singh N., Karambelkar A., Gu L., Lin K., Miller J.S., Chen C.S., Sailor M.J., Bhatia S.N., Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release, J. Am. Chem. Soc., 133(49): 19582–19585 (2011).
[77] Lee C.H., Lo L.W., Mou C.Y., Yang C.S., Synthesis and Characterization of Positive-Charge Functionalized Mesoporous Silica Nanoparticles for Oral Drug Delivery of an AntiInflammatory, Drug, Adv. Funct. Mater., 18: 3283–3292 (2008).
[78] Bhattarai S.R., Muthuswamy E., Wani A., Brichacek M., Castañeda A.L., Brock S.L., Oupicky D., Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine, Pharm Res., 27:2556–2568 (2010).
[79] Suwalski A., Dabboue H., Delalande A., Bensamoun S.F., Canon F., Midoux P., Saillant G., Klatzmann D., Salvetat J.P., Pichon C., Accelerated Achilles Tendon Healing by PDGF Gene Delivery with Mesoporous Silica Nanoparticles, Biomaterials., 31: 5237-5245 (2010).
[80] Taylor K.M.L., Kim J.S., Rieter W.J., An H., Lin W., Lin W., Mesoporous Silica Nanospheres as Highly Efficient MRI Contrast Agents, J. Am. Chem. Soc., 130: 2154-2155 (2008).
[82]  KaramiM.H., KalaeeM.R., KhajaviR., MoradiO., ZaareiD.,Thermal Degradation Kinetics of Epoxy Resin Modified with Elastomeric Nanoparticles. Adv. Compos. Hybrid. Mater., 5: 390-401 (2022).
[83] KaramiM.H., KalaeeM.R., Mazinani S., Shakiba M., Shafiei Navid, S., Abdouss, M., Beig Mohammadi A., zhao A., Koosha M., Song Z .,Li T., Curing Kinetics Modeling of Epoxy Modified by Fully Vulcanized Elastomer Nanoparticles Using Rheometry MethodMolecules., 27: 2870(2022).
[84] Chen C., Pu F., Huang Z., Liu Z., Ren J., Qu X., Stimuli-Responsive Controlled-Release System Using Quadruplex DNA-Capped Silica Nanocontainers, Nucleic Acids Res., 39:1638- 1644 (2011).
[85] Zhang J., Postovit L.M., Wang D., Gardiner R.B., Harris R., Abdul M.M., Thomas A.A., In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release, Nanoscale Res Lett., 4: 1297–1302 (2009).
[86] Lu J., Liong M., Sherman S., Xia T., Kovochich M., Nel A.E., Zink J.I., Tamanoi F., Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells, Nanobiotechnol., 3:89–95 (2007).
[87] Lai C.Y., TrewynB.G., Jeftinija D.M., Jeftinija K., Xu S., Jeftinija S., Lin V.S.Y., A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules, J. Am. Chem. Soc., 125: 4451-4459 (2003).
[88] Kim M.H., Na H.K., Kim Y.K., Ryoo S.R., Cho H.S., Lee K.E., Jeon H., Ryoo R., Min D.H., Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery, ACS Nano., 5: 3568–3576 (2011).
[89] Sun J.T., Hong C.Y., Pan C.Y., Fabrication of PDEAEMA-Coated Mesoporous Silica Nanoparticles and pH-Responsive Controlled Release, J. Phys. Chem. C., 114: 12481-12486 (2010).
[90] Slowing I.I., Trewyn B.G., Lin V.S.Y., Mesoporous Silica Nanoparticles for Intracellular Delivery of Membrane-Impermeable Proteins, J. Am. Chem. Soc., 129: 8845-8849 (2007).
[91] Hom C., Lu J., Liong M., Luo H., Li Z., Zink J.I., Tamanoi F., Mesoporous Silica Nanoparticles Facilitate Delivery of siRNA to Shutdown Signaling Pathways in Mammalian Cells, Small., 11: 1185–1190 (2010).
[92]  Karami M.H., KalaeeM.R., KhajaviR., MoradiO., ZaareiD.,Thermal Degradation Kinetics of Epoxy Resin Modified with Elastomeric Nanoparticles. Adv. Compos. Hybrid. Mater., 5:  390-401 (2022).
[93] Karami M.H., KalaeeM.R., Mazinani S., Shakiba M., Shafiei Navid, S., Abdouss, M., Beig Mohammadi A., zhao A., Koosha M., Song Z .,Li T., Curing Kinetics Modeling of Epoxy Modified by Fully Vulcanized Elastomer Nanoparticles Using Rheometry Method, Molecules ., 27: 2870 (2022).
[94] Karami M. H., KalaeeM. R., Investigation of Curing Kinetics Modeling of Epoxy Nanocomposites in the Presence of Nano Graphene Oxide: A Review Study, Iranian Chemical Engineering Journal, 21(124): 71-83 (2022).
[95] Karami M. H., Kalaee M.R ., Khajavi R., Moradi O., Zaarei D., Effect of Nano Diamond on Thermal Behavior and Thermal Stability of Epoxy Resin, Nano World, 18(67): 11-19 (2022).
[96] Karami M.H.,Abdouss M., Kalaee M.R., MoradiO.,  Application of Hydrogel Nanocomposites in Biotechnology:  A Review Study, Iran polymer technology, research and development, In Press (2023).
[98] Karami M.H.,Abdouss M., Kalaee M.R., MoradiO.,  Application of Nano Hydrogels In Improving The Performance Of Wound Dressings and Drug Delivery: A Review Study. Journal of applied research in chemisry, In Press (2023).