Flexible Palladium-Carbon Nanotubes-Graphite-PVC Film for Application as an Appropriate Electrocatalyst in Oxygen Reduction of Microbial Fuel Cell

Document Type : Research Article

Authors

Faculty of Chemistry, Urmia University, Urmia, Iran

Abstract

A microbial fuel cell (MFC) is a device that converts chemical energy into electrical energy through the catalytic processes of microorganisms. In this study, a graphite-based flexible film was obtained by adding of zinc powder to a mixture of multi walled carbon nanotubes-graphite powder-polyvinyl chloride (PVC) and then selectively replacing of palladium (Pd) with Zn in a solution containing PdCl2. Surface morphology studies showed that the flexible film has a porous structure, where palladium and carbon nanotubes as uniform conduction channels are present in composite of the film. Electrochemical studies also showed that porous Pd/MWCNTs-Graphite-PVC film as a cathode in MFC at 22-ohm resistance has a current density and power density of 568 mA/m2 and 18500 µW/m2, respectively (compared to 191 mA/m2 and 810 µW/m2 for Pt foil), showing excellent electrochemical activity of the modified film for O2 reduction. Improved electrocatalytic behavior of the modified film can be attributed to porous structure of film and synergistic effect between CNTs and palladium. The method presented in this research can be employed as a favorite method for preparing of suitable electrocatalysts based on commercial graphite powder in the microbial fuel cells.

Keywords

Main Subjects


[1] Min B., Kim J., Oh S., Regan J.M., Logan B.E., Electricity Generation from Swine Wastewater Using Microbial Fuel Cells, Water res., 39: 4961-4968 (2005).
[2] Shukla A., Suresh P., Sheela B., Rajendran A., Biological Fuel Cells and Their Applications, Current sci., 87: 455-468 (2004).
[3] Kumar A., Suransh T., Mungray J.A., Mungray A.K., SnO2:PANI Modified Cathode for Performance Enhancement of Air-Cathode Microbial Fuel Cell,  J. Environ. Chem. Eng., 8: 103590-103594 (2020).
[4] Fan M., Li H., Mo J., Cheningwen Y., Liu J., Zhu J., Shen S., Performance Comparison of Activated Carbon and Pt/C Cathode Microbial Fuel Cells on Sulfamethoxazole Degradation: Effect of Salinity and Mechanism Study, J. Cleaner Prod., 375: 134018-134023 (2022).
[5] Bhowmick G., Kibena-Põldsepp E., Matisen L., Merisalu M., Kook M., Käärik M., Leis J., Sammelselg V., Ghangrekar M., Tammeveski K., Multi-Walled Carbon Nanotube and Carbide-Derived Carbon Supported Metal Phthalocyanines as Cathode Catalysts for Microbial Fuel Cell Applications, Sustain. Energy Fuels, 3: 3525-3537 (2019).
[6] You S.J., Ren Q., Zhao Q.L., Wang J.Y., Yang F.L., Power Generation and Electrochemical Analysis of Biocathode Microbial Fuel Cell Using Graphite Fibre Brush as Cathode Material, Fuel cells, 9 :588-596 (2009).
[7] رحیم نژاد مصطفی، علی پناهی رسول، بررسی عملکرد پیل سوختی میکروبی رسوبی در حضور کاتدهای برسی از جنس فلزهای گوناگون، نشریه شیمی و مهندسی شیمی ایران، 38: 271 تا 278 (1398).
[9] Bhowmick G., Kibena-Põldsepp E., Matisen L., Merisalu M., Kook M., Käärik M., Leis J., Sammelselg V., Ghangrekar M., Tammeveski K., Multi-Walled Carbon Nanotube and Carbide-Derived Carbon Supported Metal Phthalocyanines as Cathode Catalysts for Microbial Fuel Cell Applications, Sustain. Energy Fuels, 3 :3525-3537 (2019).
[10] Mashkour M., Rahimnejad M., Effect of Various Carbon-Based Cathode Electrodes on the Performance of Microbial Fuel Cell, Biofuel Res. J., 2: 296-300 (2015).
[11]  Faraji M.,   Khalilzadeh Soltanahmadi R. , Mohammadzadeh Aydisheh H., Mostafavi Bavani B.,   2.0-V Flexible All-Solid-State Symmetric Supercapacitor Device with High Electrochemical Performance Composed of MWCNTs-WO3-Graphite Sheet, Ionics,  26: 3003-3013 (2020).
[13] Faraji M., Mohammadzadeh Aydisheh H., Rational Synthesis of a Highly Porous PANI-CNTs-PVC Film for High Performance Flexible Supercapacitor, Chem Electro Chem, 5: 2882-2892 (2018).
[14] Yang L.P., Mi J.L., Liang.H., Zu Z.Y., Zhang P., Copper–Carbon: An Efficient Catalyst for Oxygen Reduction, ACS Appl. Energy Mater., 2: 6295-6301 (2019).
[15] You S.J., Ren N.Q., Zhao Q.L., Wang J.Y., Yang F.L., Power Generation and Electrochemical Analysis of Biocathode Microbial Fuel Cell Using Graphite Fibre Brush as Cathode Material, Fuel cells, 9:588-596 )2009).
[16] Kharisov B.I., Kharissova O.V., Ortiz Mendez U., De La Fuente I.G., Decoration of Carbon Nanotubes with Metal Nanoparticles: Recent Trends, Syn. React.Inorg. Met,. 46: 55-76 (2016).
[17] Al-Ghamdi A.A., El-Tantawy F., Aal N.A., El-Mossalamy E., Mahmoud W.E., Stability of New Electrostatic Discharge Protection and Electromagnetic Wave Shielding Effectiveness from Poly (Vinyl Chloride)/Graphite/Nickel Nanoconducting Composites, Polym. Degrad. Stabil, 94: 980-986 (2009).
[18] Arsiya F., Sayadi M.H., Sobhani S., Green Synthesis of Palladium Nanoparticles Using Chlorella Vulgaris, Mater. Lett., 186: 113-115 (2017).
[19] Srinivasan N., Revathi M.,  Pachamuthu P., Surface and Optical Properties of Undoped and Cu Doped ZnO Nanostructures, Optik, 130: 422-426 (2017).
[20] Wang H.,  Wei L.,  Yang C., Liu J.,  Shen J., A PYRIDINE-FE GEL with an Ultralow-Loading Pt Derivative as ORR Catalyst in Microbial Fuel Cells with Long-Term Stability and High Output Voltage, Bioelectrochemistry, 131: 107370-107375 (2020).
[21] Chen W., Liu Z., Li Y., Jiang K., Hou J., Lou X., Xing X., Liao Q., Zhu X., A Novel Stainless Steel Fiber felt/Pd Nanocatalysts Electrode for Efficient ORR in Air-Cathode Microbial Fuel Cells, Electrochim. Acta, 324: 134862-134868 (2019).
[22] Wei M., Li H., Wu S., Wang Y., Guo G., Liu Y., First-Principles Study of Oxygen Reduction Reaction on Pd-Doped LaxSr1-xCoyFe1-yO3-δ Cathodes of Solid Oxide Fuel Cells, Int. J. Hydrogen Ener. 44: 8720-28730 (2019).