Fabrication of NiTiO3 Electrocatalyst to Removal of Azo Dye Using Anodic Oxidation Process

Document Type : Research Article

Authors

1 Department of Physical Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran

2 Quality monitoring and supervision center of water and sewage company of East Azarbaijan province, Iran

Abstract

In this research, NiTiO3 electrocatalyst was prepared by sol-gel method and coated on graphite surface by electrophoretic method. Several analyzes were performed in order to investigate the microscopic morphology and structural characteristics of NiTiO3. The NiTiO3 particles were obtained in spherical form and in nano size. In addition, the cyclic voltammetry results demonstrated that the NiTiO3/G electrode exhibited superior electrocatalytic activity when compared to the G electrode. The oxidation potential of the NiTiO3/G electrode, 0.3 mV, indicated improved involvement in the anodic oxidation reaction. Conversely, the impedance results revealed a decreased charge transfer resistance for the NiTiO3/G electrode in comparison to the G electrode, thereby accelerating the degradation process. The prepared electrocatalyst was used to remove reactive black 5 (RB5) pollutant from aqueous solution by anodic oxidation process. For this purpose, the reaction reactor with NiTiO3/G anode electrode and graphite cathode electrode was used. The effect of current, initial pH, initial concentration of RB5 and process time on the removal efficiency of RB5 was investigated and the response surface method was used to optimize the anodic oxidation process. The results showed that the maximum removal efficiency of RB5 was observed in applied current, pH, initial concentration of RB5 and process time of, 500 mA, 6, 20 mg/L and 200 minutes, respectively. Based on this, such a method can be used to remove RB5 from polluted water.

Keywords

Main Subjects


[1] Ansari Ouzi Z., Aber S., Nofouzi K., Khajeh R. T., Rezaei A., Carbon Paste/LDH/Bacteria Biohybrid for the Modification of the Anode Electrode of a Microbial Fuel Cell, J. Taiwan Inst. Chem. Eng., 142: 104668 (2023).
[2] Zafar S., Bukhari D. A., Rehman A., Azo Dyes Degradation by Microorganisms – An Efficient and Sustainable Approach, Saudi J. Biol. Sci., 29(12): 103437 (2022).
[4] Rajendran S., Priya T.A.K., Khoo K. Sh., Hoang T. K.A., Ng H.S., Halimatul Munawaroh H. S., Karaman C., Orooji Y., Show P. L., A Critical Review on Various Remediation Approaches for Heavy Metal Contaminants Removal from Contaminated Soils, Chemosphere, 287: 132369 (2022).
[5] Amali S., Zarei M., Ebratkhahan M., Khataee A., Preparation of Fe@Fe2O3/3D Graphene Composite Cathode for Electrochemical Removal of Sulfasalazine, Chemosphere, 273: 128581 (2021).
[6] Padervand M., Ghasemi Sh., Hajiahmadi S., Rhimi B., Ghobadi Nejad Z., Karima S., Shahsavari Z., Wang Ch., Multifunctional Ag/AgCl/ZnTiO3 Structures as Highly Efficient Photocatalysts for the Removal of Nitrophenols, CO2 Photoreduction, Biomedical Waste Treatment, and Bacteria Inactivation, Appl. Catal. Gen., 643: 118794 (2022).
[7] Pezhhanfar S., Farajzadeh M. A., Abdollahi B., Hosseini-Yazdi S. A., Ashar Mogaddam M. R., Development of an Extraction Method Based on a Zirconium-based Metal Organic Framework for the Detection and Determination of some Pesticides in Juice Samples Using GC-FID, Anal. Bioanal. Chem. Res., 9(4): 319–330 (2022).
[10] Saghi M., Shokri A., Arastehnodeh A., Khazaeinejad M., Nozari A., The Photo Degradation of Methyl red in Aqueous Solutions by α-Fe2O3/SiO2 Nano Photocatalyst, J. Nanoanalysis, 5(3): 163–170 (2018).
[12] Najafidoust A., Abdollahi B., Asl E. A., Karimi R., Synthesis and Characterization of Novel M@ZnO/UiO-66 (M = Ni, Pt, Pd and Mixed Pt&Pd) as an Efficient Photocatalyst Under Solar Light, J. Mol. Struct., 1256: 132580 (2022).
[13] Liu L., Chen Z., Zhang J., Shan D., Wu Y., Bai L., Wang B., Treatment of Industrial dye Wastewater and Pharmaceutical Residue Wastewater by Advanced Oxidation Processes and Its Combination with Nanocatalysts: A Review, J. Water Process Eng., 42: 102122 (2021).
[14] Dihom H. R., Al-Shaibani M. M., Radin Mohamed R. M. S., Al-Gheethi A. A., Sharma A., Khamidun M. H. B., Photocatalytic Degradation of Disperse azo Dyes in Textile Wastewater Using Green Zinc Oxide Nanoparticles Synthesized in Plant Extract: A Critical Review, J. Water Process Eng., 47: 102705 (2022).
[16] Khataee A., Arefi-Oskoui S., Abdollahi B., Hanifehpour Y., Joo S. W., Synthesis and Characterization of PrxZn1−xSe Nanoparticles for Photocatalysis of Four Textile Dyes with Different Molecular Structures, Res. Chem. Intermed., 41(11): 8425–8439 (2015).
[17] Honarmandrad Z., Sun X., Wang Z., Naushad M., Boczkaj G. Activated Persulfate and Peroxymonosulfate Based Advanced Oxidation Processes (AOPs) for Antibiotics Degradation – A Review, Water Resour. Ind., 29: 100194 (2023).
]19[ عبدالمحمدی، شهرزاد؛ جانی تبار درزی، سیمین؛ ایران فر، شیدا، کاربرد نانوذره‌های ZnO آلاییده شده با رنگ رز بنگال در تخریب فوتوکاتالیستی آلاینده‌هاى فنلى با تابش نور مرئى، نشریه شیمی و مهندسی شیمی ایران، (3)39: 47-53، (1399).
[20] Shokri A. and Mahanpoor K., Removal of Ortho-Toluidine from Industrial Wastewater by UV/TiO2 Process, J. Chem. Health Risks, 6(3): (2016).
[21] M'Arimi M. M., Mecha C. A., Kiprop A. K., Ramkat R., Recent Trends in Applications of Advanced Oxidation Processes (AOPs) in Bioenergy Production: Review, Renew. Sustain. Energy Rev., 121: 109669 (2020).
[22] Mohammadi R., Masoumi B., Mashayekhi R., Hosseinian A., Fe3O4/Polystyrene-Alginate Nanocomposite as a Novel Adsorbent for Highly Efficient Removal of Dyes, Iran. J. Chem. Chem. Eng., 41(11): 3632-3645 (2022).
[24] Najafidoust A., Abdollahi B., Abbasi Asl E., Karimi R., Synthesis and Characterization of Novel M@ZnO/UiO-66 (M = Ni, Pt, Pd and Mixed Pt&Pd) as an Efficient Photocatalyst Under Solar Light, J. of Mole. Str., 1256: 132580 (2022).
[27] Luna Y. De and Bensalah N., Review on the Electrochemical Oxidation of Endocrine-Disrupting Chemicals using BDD Anodes, Curr. Opin. Electrochem., 32: 100900 (2022).
[30] Padervand M., Lammel G., Bargahi A., Mohammad-Shiri H., Photochemical Degradation of the Environmental Pollutants Over the Worm-Like Nd2CuO4-Nd2O3 Nanostructures, Nano-Struct. Nano-Objects, 18: 100258 (2019).
[31] Hodges B. C., Cates E. L., Kim J.-H., Challenges and Prospects of Advanced Oxidation Water Treatment Processes using Catalytic Nanomaterials, Nat. Nanotechnol., 13(8): 642–650 (2018).
[32] Lin N., Gong Y., Wang R., Wang Y., Zhang X., Critical Review of Perovskite-Based Materials in Advanced Oxidation System for Wastewater Treatment: Design, Applications and Mechanisms, J. Hazard. Mater., 424: 127637 (2022).
[33] Zhang H., Ji X., Xu H., Zhang R., Zhang H., Design and Modification of Perovskite Materials for Photocatalytic Performance Improvement, J. Environ. Chem. Eng., 11(1): 109056 (2023).
[35] Barman S. and Sahu P. P., NiTiO3 Perovskite Nanoparticles for Highly Durable Hydrogen and Oxygen Evolution in Water Splitting, in 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT),  (2022).
[36] Rezaei A., Aber S., Roberts D. J., Javid GA A., Synthesis and Study of CuNiTiO3 as an ORR Electrocatalyst to Enhance Microbial Fuel Cell Efficiency, Chemosphere, 307: 135709 (2022).
[38] Yuvaraj S., Nithya V.D., Saiadali Fathima K., Sanjeeviraja C., Kalai Selvan G., Arumugam S., Kalai Selvan R., Investigations on the Temperature Dependent Electrical and Magnetic Properties of NiTiO3 by Molten Salt Synthesis, Mater. Res. Bull., 48(3): 1110–1116 (2013).
[40] Du X., Oturan, M. A., Minghua Z., Belkessa N., Su P., Cai J., Trellu C., Mousset E., Nanostructured Electrodes for Electrocatalytic Advanced Oxidation Processes: From Materials Preparation to Mechanisms Understanding and Wastewater Treatment Applications, Appl. Catal. B Environ., 296: 120332 (2021).
[41] Yang X., Zou R., Huo F., Cai D., Xiao D., Preparation and Characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 Thin Film as Electrode Material for the Degradation of Phenol, J. Hazard. Mater., 164(1): 367–373 (2009).
[42] Babaei T., Zarei M., Hosseini M. G., Hosseini M. M., Electrochemical Advanced Oxidation Process of Phenazopyridine Drug Waste Using Different Ti-Based IrO2-Ta2O5 Anodes, J. Taiwan Inst. Chem. Eng., 117: 103–111 (2020).
[43] Jamal Sisi A., Fathinia M., Khataee A., Orooji Y., Systematic Activation of Potassium Peroxydisulfate with ZIF-8 Via Sono-Assisted Catalytic Process: Mechanism and Ecotoxicological Analysis, J. Mol. Liq., 308: 113018 (2020).
[46] Abdel-Aziz M. H., Bassyouni M., Zoromba M. S., Alshehri A. A., Removal of Dyes from Waste Solutions by Anodic Oxidation on an Array of Horizontal Graphite Rods Anodes, Ind. Eng. Chem. Res., 58(2): 1004–1018 (2019).