IInvestigation of Non-Covalent Interactions and Optical Properties in a Manganese (II) Complex with Pyridine-N-oxide-2-carboxylic Acid

Document Type : Research Article


1 Department of Physics, Faculty of Science, Hakim Sabzevari University, Sabzevar, I.R. IRAN

2 Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, I.R. IRAN


It is essential to design and produce new compounds with the desired features and functions with the recognition, control, and purposeful creation of non-covalent interactions under crystal engineering. At first, it optimized the structure of the smallest independent piece of [Mn(Py-NO)2(H2O)4] coordination compound constructed from crystallized data by DFT method. Computational Surveys of high-level quantum chemistry by the corrected dispersion density function show that the various non-covalent interactions, such as O–H···O، O–H···N and C–H···π, control the formation of a crystalline network in the studied complexes. The structural results show that the Hydrogen bonds play an important role in the stability of the crystalline composite. Obtained optical spectra by the full-potential linearized augmented plane wave method indicate that Mn-3d mode plays an important role in optical transitions. The metallic property is predicted for this compound above 25 electron volts.


Main Subjects

[1] Van der Waals J. D., On the Continuity of the Gaseous and Liquid States, Doctoral Dissertation, Universiteit Leiden, (1873).
[2] Desiraju G. R. Crystal Engineering: A Brief Overview. J. Chem. Sci., 122: 667 (2010).
[3] Ikkala O., ten Brinke G., Functional Materials Based on Self-Assembly of Polymeric Supramolecules, Science 295: 2407 (2002).
[4] Zhang J. P., Lin Y. Y., Zhang W. X., Chen X. M., Temperature-or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer, J. Am. Chem. Soc. 127: 14162 (2005).
[7] Mirzaei M., Hosseini H. E., Chahkandi M., Alfi N., Shokrollahi A., Shokrollahi N., Janiak A., Comprehensive Studies of Non-Covalent Interactions Within Four New Cu(II) Supramolecules, Cryst. Eng. Comm., 14: 8468 (2012).
[8] Mirzaei M., Hosseini H. E., Abadeh M. M., Chahkandi M., Frontera A., Hassanpoor A., Influence of Accompanying Anions on Supramolecular Assembly and Coordination Geometry in Hg(II) Complexes with 8-Aminoqinoline: Experimental and Theoretical Studies, Cryst. Eng. Comm., 15: 1404 (2013).
[9] Desiraju G. R., Crystal engineering. “Structure and Function. Perspectives in Supramolecular Chemistry”, JohnWiley & Sons Inc., Chichester (2003).
[10] Tiekink E. R., Vittal J. J., “Frontiers in Crystal Engineering”, John Wiley & Sons, Inc., Chichester, (2005).
[11] Braga D., Grepioni F., Orpen A. G., “Crystal Engineering. from Molecules to Crystals to Materials”, Kluwer, Dordrecht (1999).
[12] Desiraju G. R., Steiner T., “The Weak Hydrogen Bond in Structural Chemistry and Biology”, OUP, Oxford (1999).
[13] Metrangolo P., Neukirch H., Pilati T., Resnati G., Halogen Bonding Based Recognition Processes: A World Parallel to Hydrogen Bonding, Acc. Chem. Res. 38: 386 (2005).
[14] Bui T. T. T., Dahaoui S. , Lecomte C., Desiraju G. R., Espinosa E., The Nature of Halogen…Halogen Interactions: A Model Derived from Experimental Charge-Density Analysis, Angew. Chem. Int. Ed. 48: 3838 (2009).
[15] Müller-Dethlefs K., Hobza P., Noncovalent Interactions: A Challenge for Experiment and Theory, Chem. Rev. 100: 143 (2000).
[16] Thanthiriwatte K. S., Hohenstein E. G., Burns L. A., Sherrill C. D., Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions, J. Chem. Theory Comput. 7: 88 (2011).
[19] Shahrabi M. M., Hosseini H. E., Bauza A., Zarghami S., Ballester P., Mague J. T., Frontera A., On the Importance of Non-Covalent Interactions in the Structure of Coordination Cu(II) and Co(II) Complexes of Pyrazine- and Pyridine-Dicarboxylic Acid Derivatives: Experimental and Theoretical Views, Cryst. Eng. Comm., 16: 6149 (2014).
[20] Bazargan M., Mirzaei M., Hosseini H. E., Mague J. T., Bauza A., Frontera A., Synthesis, X-Ray Characterization and DFT Study of a Novel Fe(III)-Pyridine-2,6-Dicarboxylic Acid N-Oxide Complex with Unusual Coordination Mode, Inorganica Chim. Acta, 449: 44 (2016).
[22] Mirzaei M., Hosseini H. E., Bazargan M., Mehrzad F., Shahbazi M., Mague J. T., Bauza A., Frontera A., Two New Copper and Nickel Complexes of Pyridine-2,6-Dicarboxylic Acid
N-Oxide and Their Proton Transferred Salt: Solid State and DFT Insights
, Inorganica Chim. Acta, 438: 135 (2015).
[23] رحمتی، محمد حسین؛ فرهادی، سعید؛ زبر دستی، عابدین؛ فتوکربوکسیل زدایی گروهی از α- آریل کربوکسیلیک اسیدها با استفاده از کاتالیست منگنز (2،6- دی کلروفنیل) پورفیرین کلرید(Cl(TDCPP)Mn) در حضور هیدروژن پراکسید، نشریه شیمی و مهندسی شیمی ایران، (3)30: 85 تا90 (1390).
[25] Becke A. D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98: 5648 (1993).
[27] Hashemi Z. H., Mirzaei M., Hosseini H. E., Sadeghi F., Shamsipur M., Ardalani M., Blake A. J., Solid and Solution States Studies of two Mn(II) Complexes Based on N -Oxidized Pyridine-2,5-Dicarboxylic Acid, J. Coord. Chem., 71: 4058 (2018).
[31] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox, D.J., Gaussian 09, revision A.02, Gaussian, Inc.: Wallingford, CT. (2009).
[32] Schwarz K., DFT Calculations of Solids with LAPW and WIEN2k, J. Solid State Chem., 176: 319 (2003).
[33] Rahnamaye Aliabad H. A., Mojarradi Z., Yalcin B. G., DFT Studies for Optoelectronic Properties of Pure L-Alanine and Doped with Li, J. Mater. Sci.: Mater. Electron. 27: 4887 (2016).
[34] Rahnamaye Aliabad H. A., Tayebee R., Khalili M. B., Ab Initio Studies of Optoelectronic Properties of Fluorine-Substituted Ferrocene, Res Chem. Intermediat., 42: 3743, (2015).
[35] Rahnamaye Aliabad H. A., Yalcin B. G., Effects of IIIB Transition Metals on Optoelectronic and Magnetic Properties of HoMnO3: A First Principles Study, Chin. Phys. B. 24: 117102 (2015).
[36] Fink G. S., Cuervo L. G., Therrien B., Evans H. S., Shulpin G. B., Mono and Oligonuclear  and Catalytic Potential.Inorg. Chim. Acta, 357: 475 (2004).
[40] Sun L. P., Niu S. Y., Jin J., Yang G. D., Ye L., Synthesis, Structure and Surface Photovoltage of a Series of NiII Coordination Polymers, Eur. J. Inorg. Chem., 2006: 5130 (2006).
[41] Xiong Y., Fan Y. Z., Yang R., Chen S., Pan M., Jiang J. J., Su C. Y., Amide and N-oxide Functionalization of T-Shaped Ligands for Isoreticular MOFs with Giant Enhancements in CO2 Separation, Chem. Commun., 50: 14631 (2014).
[42] Chahkandi M., Bhatti M. H., Yunus U., Shaheen S., Nadeem M., Tahir M. N., Synthesis
and Comprehensive Structural Studies of a Novel Amide Based Carboxylic Acid Derivative: Non-Covalent Interactions
, J. Mol. Struct. 1133: 499 (2017).
[43] Chahkandi M., Rahnamaye Aliabad H. A., Crystalline Network form of Gefitinib Molecule Stabilized by Non–Covalentinteractions: DFT-D Calculations, Chem. Phys. 525: 110418 (2019).
[44] Kumar S. V., Raghavendra V., Subramanian V., Bader’s Theory of Atoms in Molecules (AIM) and Its Applications to Chemical Bonding, J. Chem. Sci. 128: 1527 (2016).