بهینه سازی فرایند تثبیت و جامدسازی سیمانی لجن صنایع آبکاری توسط شبکه عصبی مصنوعی و روش سطح پاسخ

نوع مقاله: علمی-پژوهشی

نویسندگان

تهران، دانشگاه تربیت مدرس، دانشکده مهندسی مهندسی عمران و محیط زیست

چکیده

فرایند تثبیت و جامدسازی یکی از روش‌ های دفع پسماندهای خطرناک می ‌باشد. در این پژوهش از اختلاط آب مقطر، سیمان پرتلند تیپ دو، آهک و منیزیم اکسید برای تثبیت و جامد سازی لجن صنایع آبکاری استفاده شد. در این مطالعه مقاومت فشاری و میزان غلظت کروم و روی در شیرابه TCLP به عنوان پاسخ در نظر گرفته شد. طراحی 30 آزمایش براساس طرح مرکب مرکزی برای محاسبه معادله مدل در روش سطح پاسخ و آموزش شبکه عصبی مصنوعی انجام شد. از طراحی تصادفی 10 آزمایش برای صحت سنجی روش های چند متغیره استفاده شد. سپس بهینه سازی فرایند تثبیت و جامدسازی با استفاده از روش سطح پاسخ و شبکه عصبی مصنوعی با یکدیگر مقایسه شد. با توجه به نتیجه‌ های مطالعه، از هر دو روش می‌ توان با اطمینان بالا در بهینه سازی فرایند استفاده کرد. شبکه عصبی مصنوعی نسبت به روش سطح پاسخ، روشی دقیق تر در مدل‌ سازی فرایند تثبیت و جامدسازی بود. همچنین برای رسیدن به بیش‌ ترین لجن خشک قابل دفن طبق استاندارد، میزان منیزیم اکسید، آهک، آب و سیمان مصرفی با توجه به مدل روش سطح پاسخ به ترتیب برابر 3/15، 6/3، 5/49، 19 گرم و براساس شبکه عصبی مصنوعی به ترتیب برابر 9/14، 4/3، 46، 5/18 گرم برای 100 گرم لجن خشک صنایع آبکاری به ‌دست آمد.

کلیدواژه‌ها

موضوعات


 

1] Zhen G., Yan X., Zhou H., Chen H., Zhao T., Zhao Y., Effects of Calcined Aluminum Salts on the Advanced Aewatering and Solidification/Stabilization of Sewage Sludge, Journal of Environmental Sciences, 23(7):1225-32 (2011).

[2] Xu H., Liu D.D., He L., Liu N., Ning G., Adsorption of Copper (II) from an Wastewater Effluent of Electroplating Industry by Poly (ethyleneimine)-Functionalized Silica, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2):73-81 (2015).

[3] Chen Y.L., Ko M.S., Lai Y.C., Chang J.E., Hydration and Leaching Characteristics of Cement Pastes made from Electroplating Sludge, Waste management, 31(6):1357-63. (2011)

[4] Aydın A.A., Aydın A., Development of an Immobilization Process for Heavy Metal Containing Galvanic Solid Wastes by Use of Sodium Silicate and Sodium Tetraborate, Journal of hazardous materials, 270:35-44 (2014).

[5] Pandey B., Kinrade S.D., Catalan L.J., Effects of Carbonation on the Leachability and Compressive Strength of Cement-Solidified and Geopolymer-Solidified Synthetic Metal Wstes, Journal of environmental management, 101:59-67 (2012).

[6] Voglar G.E., Lestan D., Efficiency Modeling of Solidification/Stabilization of Multi-Metal Contaminated Industrial Soil Using Cement and Additives, Journal of hazardous materials, 192(2):753-62 (2011).

[7] Hale B., Evans L., Lambert R., Effects of Cement or Lime on Cd, Co, Cu, Ni, Pb, Sb and Zn Mobility in Field-Contaminated and Aged Soils, Journal of Hazardous Materials, 199:119-27 (2012).


[8] Voglar G.E., Lestan D., Solidification/Stabilisation of Metals Contaminated Industrial Soil from Former Zn Smelter in Celje, Slovenia, Using Cement as a Hydraulic Binder, Journal of Hazardous Materials, 178(1):926-33 (2010).

[9]  Tantawy M.A., El-Roudi A.M., Salem A.A., Immobilization of Cr (VI) in Bagasse ash Blended Cement pastes, Construction and Building Materials, 30(1):218-223 (2012).

[10] Radić S., Babić M., Škobić D., Roje V., Pevalek-Kozlina B., Ecotoxicological Effects of Auminum and Zinc on Growth and Antioxidants in Lemna minor L, Ecotoxicology and Environmental Safety, 73(3):336-42 (2010).

[11] Wu Q., Qu Y., Li X., Wang D., Chromium Exhibits Adverse Effects at Environmental Relevant Concentrations in Chronic Toxicity Assay System of Nematode Caenorhabditis Elegans, Chemosphere, 87(11):1281-7 (2012).

[12] Chen Q.Y., Tyrer M., Hills C.D., Yang X.M., Carey P., Immobilisation of Heavy Metal in Cement-Based Solidification/Stabilisation: a Review, Waste Management, 29(1):390-403 (2010).

[13] Ivšić-Bajčeta D., Kamberović Ž., Korać M., Gavrilovski M., A Solidification/Stabilization Process for Wastewater Treatment Sludge from a Primary Copper Smelter, Journal of the Serbian Chemical Society, 78(5):725-39 (2013).

[14] Radovanović D.Đ., Kamberović Ž.J., Korać M.S., Rogan J.R., Solidified Structure and Leaching Properties of Metallurgical Wastewater Treatment Sludge After Solidification/Stabilization Process, Journal of Environmental Science and Health, Part A, 51(1):34-43 (2016).

[15] Jegandan S., Liska M., Osman A.A., Al-Tabbaa A., Sustainable Binders for Soil Stabilization, Proceedings of the ICE-Ground Improvement, 163(1):53-61 (2010).

[16] Cubukcuoglu B., Ouki S.K., Solidification/Stabilisation of Electric Arc Furnace Waste Using Low Grade MgO, Chemosphere, 86(8):789-96 (2012).

[17] del Valle-Zermeño R., Giró-Paloma J., Formosa J., Chimenos J.M., Low-Grade Magnesium Oxide by-products for Environmental Solutions: Characterization and Geochemical Performance, Journal of Geochemical Exploration, 152:134-44 (2015).

[18] Khayet M., Cojocaru C., Essalhi M., Artificial Neural Network Modeling and Response Surface Methodology of Desalination by Reverse Osmosis, Journal of Membrane Science, 368(1):202-14 (2011).

[19] Ranjan D., Mishra D., Hasan S.H., Bioadsorption of Arsenic: an Artificial Neural Networks and Response Surface Methodological Approach, Industrial & Engineering Chemistry Research, 50(17):9852-63 (2011).

[20] Khanlou H.M., Sadollah A., Ang B.C., Kim J.H., Talebian S., Ghadimi A., Prediction and Optimization of Electrospinning Parameters for Polymethyl Methacrylate Nanofiber Fabrication Using Response Surface Methodology and Artificial Neural Networks, Neural Computing and Applications25(3-4):767-77 (2014).


[21] Keypour H., Noroozi M., Rashidi A., Shariati Rad M., Application of Response Surface Methodology for Catalytic Hydrogenation of Nitrobenzene to Aniline Using Ruthenium Supported Fullerene Nanocatalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1):21-32 (2015).

[22] ترجمان نژاد، علی؛ یاسمی، مهناز، پیش بینی حلالیت اکسیژن در حلال های آلی با استفاده از شبکه عصبی مصنوعی، نشریه شیمی و مهندسی شیمی ایران، (1)33: 49 تا 55 (1393).

[23] Ojovan M.I., Lee W.E., "An Introduction to Nuclear Waste Immobilisation", Newnes (2013).

[24] ASTM C109 / C109M-13e1., "Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)", ASTM International, West Conshohocken (2013).

[25] Method 1311., "Toxicity Characteristic Leaching Procedure Test Method for Evaluation of Solid Wastes, Physical Chemical Methods", United States Environmental Protection Agency (2003).

[26] Lasheen M.R., Ashmawy A.M., Ibrahim H.S., Moniem S.M., Pozzolanic-Based Materials for Stabilization/Solidification of Contaminated Sludge with Hazardous Heavy Metal: Case Study, Desalination and Water Treatment, 51:(13-15):2644-55 (2013).

[27] Geyikçi F., Kılıç E., Çoruh S., Elevli S., Modelling of Lead Adsorption from Industrial Sludge Leachate on Red mud by Using RSM and ANN, Chemical Engineering Journal, 183:53-9 (2012).

[28] Ebrahimzadeh H., Tavassoli N., Sadeghi O., Amini M.M., Jamali M., Comparison of Novel Pyridine-Functionalized Mesoporous Silicas for Au (III) Extraction from Natural Samples, Microchimica Acta, 172(3-4):479-87 (2012).

[29] Trezza M.A., Tironi A., Irassar E.F., Scian A.N., Blended Cements with Kaolinitic Calcined Clays: Study of the Immobilization of Cr (VI), Calcined Clays for Sustainable Concrete, 10:203-209 (2015).

[30] Lampris C., Stegemann J.A., Cheeseman C.R., Solidification/Stabilisation of Air Pollution Control Residues Using Portland Cement: Physical Properties and Chloride Leaching, Waste Management, 29(3):1067-75 (2010).

1] Zhen G., Yan X., Zhou H., Chen H., Zhao T., Zhao Y., Effects of Calcined Aluminum Salts on the Advanced Aewatering and Solidification/Stabilization of Sewage Sludge, Journal of Environmental Sciences, 23(7):1225-32 (2011).

[2] Xu H., Liu D.D., He L., Liu N., Ning G., Adsorption of Copper (II) from an Wastewater Effluent of Electroplating Industry by Poly (ethyleneimine)-Functionalized Silica, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2):73-81 (2015).

[3] Chen Y.L., Ko M.S., Lai Y.C., Chang J.E., Hydration and Leaching Characteristics of Cement Pastes made from Electroplating Sludge, Waste management, 31(6):1357-63. (2011)

[4] Aydın A.A., Aydın A., Development of an Immobilization Process for Heavy Metal Containing Galvanic Solid Wastes by Use of Sodium Silicate and Sodium Tetraborate, Journal of hazardous materials, 270:35-44 (2014).

[5] Pandey B., Kinrade S.D., Catalan L.J., Effects of Carbonation on the Leachability and Compressive Strength of Cement-Solidified and Geopolymer-Solidified Synthetic Metal Wstes, Journal of environmental management, 101:59-67 (2012).

[6] Voglar G.E., Lestan D., Efficiency Modeling of Solidification/Stabilization of Multi-Metal Contaminated Industrial Soil Using Cement and Additives, Journal of hazardous materials, 192(2):753-62 (2011).

[7] Hale B., Evans L., Lambert R., Effects of Cement or Lime on Cd, Co, Cu, Ni, Pb, Sb and Zn Mobility in Field-Contaminated and Aged Soils, Journal of Hazardous Materials, 199:119-27 (2012).

[8] Voglar G.E., Lestan D., Solidification/Stabilisation of Metals Contaminated Industrial Soil from Former Zn Smelter in Celje, Slovenia, Using Cement as a Hydraulic Binder, Journal of Hazardous Materials, 178(1):926-33 (2010).

[9]  Tantawy M.A., El-Roudi A.M., Salem A.A., Immobilization of Cr (VI) in Bagasse ash Blended Cement pastes, Construction and Building Materials, 30(1):218-223 (2012).

[10] Radić S., Babić M., Škobić D., Roje V., Pevalek-Kozlina B., Ecotoxicological Effects of Auminum and Zinc on Growth and Antioxidants in Lemna minor L, Ecotoxicology and Environmental Safety, 73(3):336-42 (2010).

[11] Wu Q., Qu Y., Li X., Wang D., Chromium Exhibits Adverse Effects at Environmental Relevant Concentrations in Chronic Toxicity Assay System of Nematode Caenorhabditis Elegans, Chemosphere, 87(11):1281-7 (2012).

[12] Chen Q.Y., Tyrer M., Hills C.D., Yang X.M., Carey P., Immobilisation of Heavy Metal in Cement-Based Solidification/Stabilisation: a Review, Waste Management, 29(1):390-403 (2010).

[13] Ivšić-Bajčeta D., Kamberović Ž., Korać M., Gavrilovski M., A Solidification/Stabilization Process for Wastewater Treatment Sludge from a Primary Copper Smelter, Journal of the Serbian Chemical Society, 78(5):725-39 (2013).

[14] Radovanović D.Đ., Kamberović Ž.J., Korać M.S., Rogan J.R., Solidified Structure and Leaching Properties of Metallurgical Wastewater Treatment Sludge After Solidification/Stabilization Process, Journal of Environmental Science and Health, Part A, 51(1):34-43 (2016).

[15] Jegandan S., Liska M., Osman A.A., Al-Tabbaa A., Sustainable Binders for Soil Stabilization, Proceedings of the ICE-Ground Improvement, 163(1):53-61 (2010).

[16] Cubukcuoglu B., Ouki S.K., Solidification/Stabilisation of Electric Arc Furnace Waste Using Low Grade MgO, Chemosphere, 86(8):789-96 (2012).

[17] del Valle-Zermeño R., Giró-Paloma J., Formosa J., Chimenos J.M., Low-Grade Magnesium Oxide by-products for Environmental Solutions: Characterization and Geochemical Performance, Journal of Geochemical Exploration, 152:134-44 (2015).

[18] Khayet M., Cojocaru C., Essalhi M., Artificial Neural Network Modeling and Response Surface Methodology of Desalination by Reverse Osmosis, Journal of Membrane Science, 368(1):202-14 (2011).

[19] Ranjan D., Mishra D., Hasan S.H., Bioadsorption of Arsenic: an Artificial Neural Networks and Response Surface Methodological Approach, Industrial & Engineering Chemistry Research, 50(17):9852-63 (2011).

[20] Khanlou H.M., Sadollah A., Ang B.C., Kim J.H., Talebian S., Ghadimi A., Prediction and Optimization of Electrospinning Parameters for Polymethyl Methacrylate Nanofiber Fabrication Using Response Surface Methodology and Artificial Neural Networks, Neural Computing and Applications25(3-4):767-77 (2014).

[21] Keypour H., Noroozi M., Rashidi A., Shariati Rad M., Application of Response Surface Methodology for Catalytic Hydrogenation of Nitrobenzene to Aniline Using Ruthenium Supported Fullerene Nanocatalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1):21-32 (2015).

[22] ترجمان نژاد، علی؛ یاسمی، مهناز، پیش بینی حلالیت اکسیژن در حلال های آلی با استفاده از شبکه عصبی مصنوعی، نشریه شیمی و مهندسی شیمی ایران، (1)33: 49 تا 55 (1393).

[23] Ojovan M.I., Lee W.E., "An Introduction to Nuclear Waste Immobilisation", Newnes (2013).

[24] ASTM C109 / C109M-13e1., "Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)", ASTM International, West Conshohocken (2013).

[25] Method 1311., "Toxicity Characteristic Leaching Procedure Test Method for Evaluation of Solid Wastes, Physical Chemical Methods", United States Environmental Protection Agency (2003).

[26] Lasheen M.R., Ashmawy A.M., Ibrahim H.S., Moniem S.M., Pozzolanic-Based Materials for Stabilization/Solidification of Contaminated Sludge with Hazardous Heavy Metal: Case Study, Desalination and Water Treatment, 51:(13-15):2644-55 (2013).

[27] Geyikçi F., Kılıç E., Çoruh S., Elevli S., Modelling of Lead Adsorption from Industrial Sludge Leachate on Red mud by Using RSM and ANN, Chemical Engineering Journal, 183:53-9 (2012).

[28] Ebrahimzadeh H., Tavassoli N., Sadeghi O., Amini M.M., Jamali M., Comparison of Novel Pyridine-Functionalized Mesoporous Silicas for Au (III) Extraction from Natural Samples, Microchimica Acta, 172(3-4):479-87 (2012).

[29] Trezza M.A., Tironi A., Irassar E.F., Scian A.N., Blended Cements with Kaolinitic Calcined Clays: Study of the Immobilization of Cr (VI), Calcined Clays for Sustainable Concrete, 10:203-209 (2015).

[30] Lampris C., Stegemann J.A., Cheeseman C.R., Solidification/Stabilisation of Air Pollution Control Residues Using Portland Cement: Physical Properties and Chloride Leaching, Waste Management, 29(3):1067-75 (2010).