تأثیر افزودن آلومینا در عملکرد نانوکاتالیست CuO-ZnO-CeO2 برای استفاده در ریفورمینگ متانول در حضور بخار آب

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

چکیده

فعالیت کاتالیستی و انتخاب پذیری هیدروژن در کاتالیست­ های مس بنیان که توسط اکسیدهای فلزی ZnO، 2CeO و 3O2Al بهبود یافته ­اند، برای تولید گزینشی هیدروژن در فرایند ریفورمینگ متانول با بخارآبمورد ارزیابی قرار گرفته است. نانوکاتالیست­ های 2CuO-ZnO-CeO و 3O2-Al 2CuO-ZnO-CeO به روش احتراقی (اوره به عنوان سوخت سنتز احتراقی) برای مطالعه تاثیر افزودن آلومینا در کنار 2CeO بر روی ویژگی­ های فیزیکی شیمیایی و عملکرد کاتالیستی سنتز شدند. آنالیزهای XRD، FeSEM، SEM-EDX، BET و FT-IR برای شناسایی ویژگی­ های فیزیکی شیمیایی نمونه ­های سنتزی استفاده شد. ساختار بلوری گونه­ های CuO، ZnO، 2CeO در الگوهای پراش اشعه ایکس دیده شد. حضور آلومینا به علت مقدار کم و یا ساختار بی­ شکل آن به وسیله آنالیز XRD قابل دیدن نبود ولی توسط آنالیزهای EDX و FT-IR دیده شد. تصویرهای FESEM نانو بودن ذره ­ها را اثبات کرد و همچنین حفره ­های سنتز احتراقی نیز در این تصویرها دیده می شوند. مطالعه­ های مربوط به فعالیت کاتالیستی نشان از افزایش تبدیل متانول و انتخاب پذیری هیدروژن با افزودن آلومینا در کنار سریا اکسید دارد درحالی که انتخاب‌پذیری CO به عنوان فراورده­ی ناخواسته کاهش پیدا کرده است.

کلیدواژه‌ها

موضوعات


[1] Turkmen A.C., Solmaz S., Celik C., Analysis of Fuel Cell Vehicles with Advisor Software, Renewable and Sustainable Energy Reviews, 70: 1066-1071 (2017).

[2] Khorasany R.M.H., Singh Y., Sadeghi Alavijeh A., Kjeang E., Wang G.G., Rajapakse R.K.N.D., Fatigue Properties of Catalyst Coated Membranes for Fuel Cells: Ex-Situ Measurements Supported by Numerical Simulations, International Journal of Hydrogen Energy, 41(21): 8992-9003 (2016).

[3] Yazdi H., Alzate-Gaviria L., Ren Z.J., Pluggable Microbial Fuel Cell Stacks for Septic Wastewater Treatment and Electricity Production, Bioresource Technology, 180: 258-263 (2015).

[4] Spets J.P., Kiros Y., Kuosa M.A., Rantanen J., Lampinen M.J., Saari K., Bioorganic Materials as a Fuel Source for Low-Temperature Direct-Mode Fuel Cells, Electrochimica Acta, 55(26): 7706-7709 (2010).

[5] Antzara A., Heracleous E., Bukur D.B., Lemonidous A.A., Thermodynamic Analysis of Hydrogen Production via Chemical Looping Steam Methane Reforming Coupled with in Ssitu CO2 Capture, International Journal of Greenhouse Gas Control, 32: 115-128 (2015).

[6] Wang J., Chen H., Tian Y., Yao M., Li Y., Thermodynamic Analysis of Hydrogen Production for Fuel Cells from Oxidative Steam Reforming of Methanol, Fuel, 97: 805-811 (2012).

[7] Baneshi J., Haghighi M., Jodeiri N., Abdollahifar M., Ajamein H., Urea-Nitrate Combustion Synthesis of ZrO2 and CeO2 doped CuO/Al2O3 Nanocatalyst Used in Steam Reforming of Biomethanol for Hydrogen Production, Ceramics International, 40(9, Part A): 14177-14184 (2014).

[8] Abdollahifar M., Haghighi M., Babaluo A.A., Khajeh Talhoncheh S., Sono-Synthesis and Characterization of Bimetallic Ni-Co/Al2O3-MgO Nanocatalyst: Effects of Metal Content on Catalytic Properties and Activity for Hydrogen Production via CO2 Reforming of CH4, Ultrasonics Sonochemistry, 31: 173-183 (2016).

[9] Yahyavi S.R., Haghighi M., Shafiei H., Abdollahifar M., Rahmani F., Ultrasound-Assisted Synthesis and Physicochemical Characterization of Ni-Co/Al2O3-MgO Nanocatalysts Enhanced by Different Amounts of MgO Used for CH4/CO2 Reforming, Energy Conversion and Management, 97: 273-281 (2015).

[10] Faungnawakij K., Kikuchi R., Eguchi K., Thermodynamic Evaluation of Methanol Steam Reforming forHydrogen Production, Journal of Power Sources, 161(1): 87-94 (2006).

[11] Minaei S., Haghighi M., Abdollahifar M., Ajamein H., Influence of Al-Precursor in Combustion Synthesis of CuO/ZnO/CeO2/Al2O3 Nanocatalyst Used in Hydrogen Production from Steam Reforming of Methanol, Fuel and Combustion Journal, 8(1): 30-43 (2015).

[12] Shokrani R., Haghighi M., Jodeiri N., Ajamein H., Abdollahifar M., Fuel Cell Grade Hydrogen Production via Methanol Steam Reforming over CuO/ZnO/Al2O3 Nanocatalyst with Various Oxide Ratios Synthesized via Urea-Nitrates Combustion Method, International Journal of Hydrogen Energy, 39(25): 13141-13155 (2014).

[13] Gür T.M., Comprehensive Review of Mmethane Conversion in Solid Oxide Fuel Cells: Prospects for Efficient Electricity Generation from Natural Gas, Progress in Energy and Combustion Science, 54: 1-64 (2016).

[14] Holladay J.D., Wang Y., A Review of Recent Advances in Numerical Simulations of Microscale Fuel Processor for Hydrogen Production, Journal of Power Sources, 282: 602-621 (2015).

[15] Saeidi S., Fazlollahi F. Najari S., Iranshahi D., Klemeš J.J., Baxter L.L., Hydrogen Production: Perspectives, Separation with Special Emphasis on Kinetics of WGS Reaction: A State-of-the-Art Review, Journal of Industrial and Engineering Chemistry,  (In Press, Corrected Proof, 15 December 2016).

[16] Twigg M.V., Spencer M.S., Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions, Applied Catalysis A: General, 212(1–2): 161-174 (2001).

[17] Ranganathan E.S., Bej S.K., Thompson L.T., Methanol Steam Reforming over Pd/ZnO and Pd/CeO2 Catalysts, Applied Catalysis A: General, 289(2): 153-162 (2005).

[18] Huang X., Ma L., Wainwright M., The Influence of Cr, Zn and Co Additives on the Performance of Skeletal Copper Catalysts for Methanol Synthesis and Related Reactions, Applied Catalysis A: General, 257(2): 235-243 (2004).

[19] Jeong H., Kim K.I., Kim T.H., Ko C.H., Park Ch., Song I.K., Hydrogen Pproduction by Steam Reforming of Methanol in a Micro-Channel Reactor Coated with Cu/ZnO/ZrO2/Al2O3 Catalyst, Journal of Power Sources, 159(2): 1296-1299 (2006).

[20] Yao C.-Z., Wang L.-C., Liu Y.-M., Wu G.-Sh., Cao Y., Dai W.-L., He H.-Y., Fan K.-N., Effect of Preparation Method on the Hydrogen Production from Methanol Steam Reforming over Binary Cu/ZrO2 Catalysts, Applied Catalysis A: General, 297(2): 151-158 (2006).

[21] Huang G., Liaw B.-J., Jhang Ch.-J., Chen Y.-Z., Steam Reforming of Methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 Catalysts, Applied Catalysis A: General, 358(1): 7-12 (2009).

[22] Khoshbin R., Haghighi M., Urea-Nitrate Combustion Synthesis and Physicochemical Characterization of CuO-ZnO-Al2O3 Nanoparticles over HZSM-5, Chinese Journal of Inorganic Chemistry, 28(9): 1967-1978 (2012).

[23] Khoshbin R., Haghighi M., Preparation and Catalytic Performance of CuO/ZnO/Al2O3/Clinoptilolite Nanocatalyst for Single-Step Synthesis of Dimethyl Ether from Syngas as a Green Fuel, Journal of Nanoscience and Nanotechnology, 13(7): 4996-5003 (2013).

[24] Khoshbin R., Haghighi M., Asgari N., Direct Synthesis of Dimethyl Ether on the Admixed Nanocatalystsof CuO–ZnO–Al2O3 and HNO3-Modified Clinoptilolite at High Pressures: Surface Properties and Catalytic Performance, Materials Research Bulletin, 48(2): 767-777 (2013).

[25] Rahmani F., Haghighi M., Estifaee P., Synthesis and Characterization of Pt/Al2O3–CeO2 Nanocatalyst Used for Toluene Abatement from Waste Gas Streams at Low Temperature: Conventional vs. Plasma–Ultrasound Hybrid Synthesis Methods, Microporous and Mesoporous Materials, 185: 213-223 (2014).

[26] Allahyari S., Haghighi M., Ebadi A., Hosseinzadeh Sh., Ultrasound Assisted Co-Precipitation of Nanostructured CuO-ZnO-Al2O3 over HZSM-5: Effect of Precursor and Irradiation Power on Nanocatalyst Properties and Catalytic Performance for Direct Syngas to DME, Ultrasonics Sonochemistry, 21(2): 663-673 (2014).

[27] Aghamohammadi S., Haghighi M., Charghand M., Methanol Conversion to Light Olefins over Nanostructured CeAPSO-34 Catalyst: Thermodynamic Analysis of overall Reactions and Effect of Template Type on Catalytic Properties and Performance, Materials Research Bulletin, 50: 462-475 (2014).

[28] Estifaee P., Haghighi M., Mohammadi N., Rahmani F., CO Oxidation over Sonochemically Synthesized Pd–Cu/Al2O3 Nanocatalyst Used in Hydrogen Purification: Effect of Pd Loading and Ultrasound Irradiation Time, Ultrasonics Sonochemistry, 21(3): 1155-1165 (2014).

[29] Parvas M., Haghighi M., Allahyari S., Degradation of Phenol via Wet-Air Oxidation over CuO/CeO2-ZrO2 Nanocatalyst Synthesized Employing Ultrasound Energy: Physicochemical Characterization and Catalytic Performance, Environmental Technology, 35(9): 1140-1149 (2014).

[30] Estifaee P., Haghighi M., Babaluo A.A., Rahemi N., Fallah Jafari M., The Beneficial Use of Non-thermal Plasma in Synthesis of Ni/Al2O3-MgO Nanocatalyst Used in Hydrogen Production from Reforming of CH4/CO2 Greenhouse Gases, Journal of Power Sources, 257: 364-373 (2014).

[31] Sharifi M., Haghighi M., Abdollahifar M., Sono-Dispersion of Bimetallic Ni–Co over Zeolite Y Used in Conversion of Greenhouse Gases CH4/CO2 to High Valued Syngas, Journal of Natural Gas Science and Engineering, 23: 547-558 (2015).

[32] Sajjadi S.M., Haghighi M., Rahmani F., Sol-Gel Synthesis of Ni-Co/Al2O3-MgO-ZrO2 Nanocatalyst Used in Hydrogen Production via Reforming of CH4/CO2 Greenhouse Gases, Journal of Natural Gas Science and Engineering, 22: 9-21 (2015).

[33] Saedy S., Haghighi M., Amirkhosrow M., Hydrothermal Synthesis and Physicochemical Characterization of CuO/ZnO/Al2O3 Nanopowder. Part I: Effect of Crystallization Time, Particuology, 10(6): 729-736 (2012).

[34] Minaei S., et al., Urea-Nitrates Combustion Preparation of CeO2-Promoted CuO/ZnO/Al2O3 Nanocatalyst for Fuel Cell Grade Hydrogen Production via Methanol Steam Reforming, Advanced Powder Technology, 28(3): 842-853 (2017).