اندازه‌گیری آفت‌کش دیازینون در نمونه‌های سیب و آب زیرزمینی به روش ریز‌استخراج مایع ـ مایع پخشی جفت‌شده با طیف‌سنج تحرک یونی با منبع یونیزاسیون تخلیه کرونا

نوع مقاله: علمی-پژوهشی

نویسندگان

گروه شیمی تجزیه، دانشکده شیمی، دانشگاه صنعتی اصفهان، اصفهان

چکیده

در این کار پژوهشی، از روش جفت شده ریزاستخراج مایع- مایع پخشی- طیف سنجی تحرک یونی با منبع یونیزاسیون تخلیه کرونا (DLLME-CD-IMS) برای آنالیز آفت­کش دیازینون در نمونه­های حقیقی سیب و آب زیرزمینی استفاده شد. ریز استخراج مایع ـ مایع پخشی، روشی ارزان ، سریع با کارکرد آسان،حدتشخیص پایین و عامل تغلیظ بالا می‌باشد. در این فناوری، مخلوطی از 60  میکرولیتر کربن‌تتراکلرید (حلال استخراج‌کننده) و 0/1 میلی‌لیتر متانول (حلال پاشنده) به سرعت به 5 میلی‌لیتر محلول آبی دارای آنالیت تزریق شد. پس از سانتریفوژ محلول ( 3000 دور بر دقیقه به مدت 5 دقیقه) قطره­ های ریز کربن‌تتراکلرید در انتهای لوله آزمایش با انتهای مخروطی شکل ته‌نشین شدند. فاز ته‌نشین شده (5 میکرولیتر) به صورت مستقیم و بدون تبخیر حلال به‌وسیله محفظه تزریق طراحی شده، به دستگاه تزریق شد. پارامتر‌های مؤثّر بر بازده استخراج مانند نوع و حجم حلال استخراج‌کننده، امکان‌سنجی تزریق مستقیم فاز ته‌نشین شده به دستگاه CD-IMS، نوع و حجم حلال پاشنده، اثر افزایش نمک و pH محلول مورد بررسی قرارگرفت. در شرایط بهینه، عامل تغلیط 60، بازه­ی خطی 50/0- 0/100 میکروگرم بر لیتر، حد تشخیص 2/0 میکروگرم بر لیتر و انحراف استاندارد نسبی (RSD) کم­تر از % 7 به‌دست آمد. نتیجه­ های به دست آمده نشان دهنده مناسب بودن روش مورد استفاده در این کار پژوهشی برای اندازه‌گیری آفت‌کش دیازینون در نمونه‌های حقیقی سیب و آب زیرزمینی می‌باشد.

کلیدواژه‌ها

موضوعات


[1] Brealy C.Y., Walker G.H., Blodwin B.C., A Estereases Activities in Relation on Different Toxicity of Perimophose-Methyl to Birds Anad Mamals, Pestic. Sci., 11: 154-155 (1980).

[2] Ramos L., Critical Overview of Selected Contemporary Sample Preparation Techniques, J. Chromatogr. A, 1221: 84-98 (2012).

[3] Chamsaz M., Hossein-Poor-Zaryabi M., Arbab-Zavar M.H., Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop combined with Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Thallium(III) in Water Samples, Iran. J. Chem. Chem. Eng. (IJCCE), 33(1): 59-66 (2014).

[4] Bahar S., Zakerian R., Ionic Liquid Based Dispersive Liquid Liquid Microextraction and Enhanced Determination of the Palladium in Water, Soil and Vegetable Samples by FAAS, Iran. J. Chem. Chem. Eng. (IJCCE), 33(4): 51-58 (2014).

[5] El-Shahawi M.S., Al-Saidi H.M., Dispersive Liquid-Liquid Microextraction for Chemical Speciation and Determination of Ultra-Trace Concentrations of Metal Ions, Trends Anal. Chem., 44: 12-24 (2013).

[6] Nuhu A.A., Basheer C., Saad B., Liquid-Phase and Dispersive Liquid-Liquid Microextraction Techniques with Derivatization: Recent Applications in Bioanalysis, J. Chromatogr. B, 879:1180-1188 (2011).

[7] Andruch V., Kocúrová L., Balogh I.S., ˇSkrlíková J., Recent Advances in Coupling Single-Drop and Dispersive Liquid-Liquid Microextraction with UV–vis Spectrophotometry and Related Detection Techniques J., Microchem. J., 102: 1-10 (2012).

[8] Kocúrová L., Balogh I.S., ˇSandrejová J., Andruch V., Recent Advances in Dispersive Liquid-Liquid Microextraction Using Organic Solvents Lighter Than Water. A Review, Microchem. J., 102:11-17 (2012).

[9] Rezaee M., Yamini Y., Faraji M., Evolution of Dispersive Liquid-Liquid Microextraction Method, J. Chromatogr. A, 1217: 2342-2357 (2010).

[10] Zgoła-Grzesıkowiak A., Grzeskowiak T., Dispersive Liquid-Liquid Microextraction, Trend. Anal. Chem., 30: 1382-1399 (2011).

[11] Andruch V., Balogh I.S., KocurovÁ L., ˇSandrejová J., Five Years of Dispersive Liquid-Liquid Microextraction, Appl. Spectrosc. Rev., 48: 161-259 (2013).

[12] Zhao E., Zhao W., Han L., Jiang S., Zhou Z., Application of Dispersive Liquid–Liquid Microextraction for the Analysis of Organophosphorus Pesticides in Watermelon and Cucumber, J. Chromatogr. A, 1175: 137-140 (2007).

[13] Farahani H., Norouzi P., Dinarvand R., Ganjali M.R., Development of Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography–Mass Spectrometry as a Simple, Rapid and Highly Sensitive Method for the Determination of Phthalate Esters in Water Samples, J. Chromatogr. A, 1172: 105-112 (2007).

[14] Garcııa-Loıpez, M., Rodrııguez, I., C.ela, R., Development of a Dispersive Liquid–Liquid Microextraction Method for Organophosphorus Flame Retardants and Plastizicers Determination in Water Samples, J. Chromatogr. A, 1166: 9-15 (2007).

[15] Fattahi N., Samadi S., Assadi Y., Hosseini M.R.M.,Solid-Phase Extraction Combined with Dispersive Liquid–Liquid Microextraction-Ultra Preconcentration of Chlorophenols in Aqueous Samples, J. Chromatog. A, 1169: 63-69 (2007).

[16] Farajzadeh M.A., Bahram M., Jonsson J.A., Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography-Diode Array Detection as an Efficient and Sensitive Technique for Determination of Antioxidants, Anal. Chim. Acta, 591: 69-79 (2007).

[17] Xia J., Xiang B., Zhang W., Determination of Metacrate in Water Samples Using Dispersive Liquid–Liquid Microextraction and HPLC with the Aid of Response Surface Methodology and Experimental Design, Anal. Chim. Acta, 625: 28-34 (2008).

[18] Li Y., Wei G., Hu J., Liu X., Zhao X., Wang X., Dispersive Liquid–Liquid Microextraction Followed by Reversed Phase-High Performance Liquid Chromatography for the Determination of Polybrominated Diphenyl Ethers at Trace Levels in Landfill Leachate and Environmental Water Samples, Anal. Chim. Acta, 615: 96-103 (2008).

[19] Chiang J.S., Huang S.D., Simultaneous Derivatization and Extraction of Anilines in Waste Water with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Mass Spectrometric Detection, Talanta, 75: 70-75 (2008).

[20] Luo S., Fang L., Wang X., Liu H., Ouyang G., Lan C., Luan T., Determination of Octylphenol and Nonylphenol in Aqueous Sample Using simultaneous Derivatization and Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Mass Spectrometry, J. Chromatogr. A, 1217: 6762-6768 (2010).

[21] Montes R., Rodrııguez I., Ramil M., Rubıı E., Cela R., Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction for the Sensitive Determination of Selected Fungicides in Wine, J. Chromatogr. A, 1216: 5459-5466 (2009).

[22] Rezaee M., Yamini Y., Moradi M., Saleh A., Faraji M., Naeeni M.H., Supercritical Fluid Extraction Combined with Dispersive Liquid–Liquid Microextraction as a Sensitive and Efficient Sample Preparation Method for Determination of Organic Compounds in Solid Samples, J. Supercrit. Fluid., 55: 161-168 (2010).

[23] Creaser C.S., Griffiths J.R., Bramwell C.J., Noreen S., Hill C.A., Paul C.L., Ion Mobility Spectrometry: A Review. Part 1. Structural Analysis by Mobility Measurement, Analyst, 129: 984- 994 (2004).

[24] Eiceman G.A., Ion-Mobility Spectrometry as a Fast Monitor of Chemical Composition, Trend. Anal. Chem., 21: 259-275 (2002).

[25] Eiceman G.A., Karpas Z., “Ion Mobility Spectrometry”, 2th ed., CRC Press, BocaRaton, FL, (2005).

[26] Saraji M., Jafari M.T., Sherafatmand H., Sol–Gel/Nanoclay Composite as a Solid-Phase Microextraction Fiber Coating for the Determination of Organophosphorus Pesticides in Water Samples, Anal. Bioanal. Chem., 407:1241–1252 (2015).

[27] Jafari M.T., Riahi F., Feasibility of Corona Discharge Ion Mobility Spectrometry for Direct Analysis of Samples Extracted by Dispersive Liquid-Liquid Microextraction, J. Chromatogr. A, 1188: 97-107 (2008).

[28] Jafari M.T., Improved Design for High Resolution Electrospray Ionization Ion Mobility Spectrometry, Talanta, 77: 1632-1639 (2009).

[29] Saraji M., Boroujeni M.K., Recent Developments in Dispersive Liquid-Liquid Microextraction, Anal. Bioanal. Chem., 406: 2027-2066 (2014).

[30] Bota G.M., Harrington P.B., Direct Detection of Trimethylamine in Meat Food Products Using Ion mobility Spectrometry, Talanta, 68: 629-635 (2006).

[31 Jafari M.T., Saraji M., Sherafatmand H., Design for Gas Chromatography Corona Discharge Ion Mobility Spectrometry, Anal. Chem., 84: 10077-10084 (2012).

[32] Saraji M., Boroujeni M.K., Bidgoli A.A.H., Comparison of Dispersive Liquid–Liquid Microextraction and Hollow Fber Liquid–Liquid–Liquid Microextraction for the Determination of Fentanyl, Alfentanil, and Sufentanil in Water and Biological Fluids by High-Performance Liquid Chromatography, Anal. Bioanal. Chem., 400: 2149-2158 (2011).

[33] Mirzaei M., Behzadi M., Abadi M.N., Beizaei A., Simultaneous Separation/Preconcentration of Ultratrace Heavy Metals in Industrial Wastewaters by Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop Prior to Determination by Graphite Furnace Atomic Absorption Spectrometry, J. Hard. Mater., 186: 1739-1743 (2011).

[34] Liu J.F., Chi Y.G., Jiang G.B., Screening the Extractability of Some Typical Environmental Pollutants by Ionic Liquids in Liquid-Phase Microextraction, J. Sep. Sci., 28: 87-91 (2005).

[35] Melwanki M.B., Chen W.S., Bai H.Y., Lin T.Y., Fuh M.R., Determination of 7-Aminoflunitrazepam in Urine by Dispersive Liquid–Liquid Microextraction with Liquid Chromatography-Electrospray-Tandem mass Spectrometry, Talanta, 78: 618-622 (2009).

[36] Peng J.F., Liu J.F., Jiang G.B., Tai C., Huang M.J., Ionic Liquid for High Temperature Headspace Liquid-Phase Microextraction of Chlorinated Anilines in Environmental Water Samples, J. Chromatogr. A, 1072: 3-6 (2005).

[37] Soisungnoen P., Burakham R., Srijaranai S., Determination of Organophosphorus Pesticides Using Dispersive Liquid–Liquid Microextraction Combined with Reversed Electrode Polarity Stacking Mode Micellar Electrokineticchromatography, Talanta, 98: 62-68 (2012).

[38] Wang Y.L., Zeng Z.R., Liu M.M., Yang M., Dong C.Z., Determination of Organophosphorus Pesticides in Pakchoi Samples by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography Using Home-Made Fiber, Eur. Food Res. Technol., 226: 1091-1098 (2008).

[39] Sánchez M.E.R., Gómez X., Martín‐Villacorta J., Determination of Diazinon and Fenitrothion in Environmental Water and Soil Samples by HPLC, J. Liq. Chromatogr. Rel. Tech., 26: 483-497 (2003).

[40] Yu J., Wu C., Xing J., Development of New Solid-Phase Microextraction Fibers by Sol–Gel Technology for the Determination of Organophosphorus Pesticide Multiresidues in Food, J. Chromatogr. A, 1036: 101-111 (2004).

[41] Ng W.F., Teo M.J.K., Lakso H.Å., Determination of Organophosphorus Pesticides in Soil by Headspace Solid-Phase Microextraction, Fresenius J. Anal. Chem., 363: 673-679 (2000).

[42] Samadi S., Sereshti H., Assadi Y., Ultra-Preconcentration and Determination of Thirteen Organophosphorus Pesticides in Water Samples Using Solid-Phase Extraction Followed by Dispersive Liquid–Liquid Microextraction and Gas Chromatography with Flame Photometric Detection, J. Chromatogr. A, 1219: 61-65 (2012).

[43] Hu X., Zhang M., Ruan W., Zhu F., Ouyang G., Determination of Organophosphorus Pesticides in Ecological Textiles by Solid-Phase Microextraction with a Siloxane-Modified Polyurethane Acrylic Resin Fiber, Anal. Chim. Acta, 736: 62-68 (2012).

[44] Ciucu A., Ciucu C., Organic Phase Amperometric Biosensor for Detection of Pesticides, Roum. Biotechnol. Lett., 7: 667-676 (2002).