کاربرد نانو مواد پیشرفته در توسعه فناوری زیست حسگرهای آنزیمی

نوع مقاله: مروری

نویسندگان

1 پژوهشکده بیومدیسن، دانشگاه علوم پزشکی تبریز، تبریز، ایران

2 پژوهشکده نانوفناوری، گروه نانو شیمی، دانشگاه ارومیه، ارومیه، ایران

چکیده

استفاده از آنزیم‌­ها به دلیل اختصاصیت و ویژگی­ های کاتالیستی بالا برای تهیه زیست­ حسگر­ها رایج است. به منظور توسعه حسگر­های زیستی آنزیمی، آنزیم با روش­های گوناگون مانند جذب، به دام افتادن، پیوند کووالانسی، اتصال عرضی و میل ترکیبی بر روی سطح مبدل تثبیت می­ شود. برای افزایش سرعت انتقال الکترون و کاتالیز واکنش ­های آنزیمی، آنزیم بر روی /درون نانو­مواد گوناگون از جمله نانو­ذره ­های کربن مانند نانو­لوله ­های کربن و گرافن، نانو­ذره­های فلزی مانند طلا، نانو­ذره­های سیلیکا و مانند آن تثبیت می­ شود. در این مطالعه، کاربرد
نانو مواد پیشرفته در ساختار زیست ­حسگر­های آنزیمی مورد مطالعه قرار می ­گیرد.

کلیدواژه‌ها

موضوعات


[1] Adhikari B., Majumdar S., Polymers in Sensor Applications, Progress in Polymer Science, 29(7): 699-766 (2004).

[2] Arnold M.A., Meyerhoff M.E., Recent Advances in the Development and Analytical Applications of Biosensing Probes, Critical Reviews in Analytical Chemistry, 20(3):149-196 (1988).

[3] Wilson J.S., "Sensor Technology Handbook", Elsevier; (2004).

[4] Newman J.D., Setford S.J., Enzymatic Biosensors, Mol Biotechnol., 32(3): 249-268 (2006).

[5] Bohunicky B., Mousa S.A., Biosensors: the New Wave in Cancer Diagnosis, Nanotechnology, Science and Applications, 4(1): 1-10 (2011).

[6] Liu Y., Matharu Z., Howland M.C., Revzin A., Simonian A.L., Affinity and Enzyme-Based Biosensors: Recent Advances and Emerging Applications in Cell Analysis and Point-of-Care Testing, Analytical and Bioanalytical Chemistry, 404(4): 1181-196 (2012).

[7] Hasanzadeh M., Shadjou N., Eskandani M., de la Guardia M., Mesoporous Silica-Based Materials for Use in Electrochemical Enzyme Nanobiosensors, TrAC Trends in Analytical Chemistry, 40: 106-118 (2012).

[8] Morrison D.W., Dokmeci M.R., Demirci U., Khademhosseini A., "Clinical Applications of Micro-and Nanoscale Biosensors", John Wiley & Sons, Inc.: Hoboken, NJ, USA; (2007).

[9] Vo-Dinh T., Cullum B., Biosensors and Biochips: Advances in Biological and Medical Diagnostics, Fresenius' Journal of Analytical Chemistry, 366(6-7): 540-551 (2000).

[10] Hasanzadeh M., Shadjou N., Electrochemical Nanobiosensing in Whole Blood: Recent Advances, TrAC Trends in Analytical Chemistry, 80:167-176 (2016).

[11] Krajewska B., Application of Chitin-and Chitosan-Based Materials for Enzyme Immobilizations: A Review, Enzyme and Microbial Technology, 35(2): 126-139 (2004).

[12] Monošík R., Streďanský M., Šturdík E., Biosensors-Classification, Characterization and New Trends, Acta Chimica Slovaca, 5(1): 109-120 (2012).

[13] Klos-Witkowska A., Enzyme-Based Fluorescent Biosensors and Their Environmental, Clinical and Industrial Applications, Polish Journal of Environmental Studies, 24(1): 124-129 (2015).

[16] Bohunicky B., Mousa S.A., Biosensors: the New Wave in Cancer Diagnosis, Nanotechnology, Science and Applications, 4: 1-9 (2011).

[17] Soldatkin O., Peshkova V., Dzyadevych S., Soldatkin A., Jaffrezic-Renault N., El'skaya A., Novel Sucrose Three-Enzyme Conductometric Biosensor, Materials Science and Engineering: C., 28(5): 959-964 (2008).

[19] Horibe T., Kikuchi M., Kawakami K., Interaction of Human Protein Disulfide Isomerase and Human P5 with Drug Compounds: Analysis Using Biosensor Technology, Process Biochemistry, 43(12):1330-1337 (2008).

[20] Kurbanoglu S., Ozkan S.A., Merkoçi A., Nanomaterials-Based Enzyme Electrochemical Biosensors Operating Through Inhibition for Biosensing Applications, Biosens Bioelectron, 89:886-898 (2017).

[21] Justino C.I., Freitas A.C., Pereira R., Duarte A.C., Santos T.A.R., Recent Developments in Recognition Elements for Chemical Sensors and Biosensors, TrAC Trends in Analytical Chemistry, 68: 2-17 (2015).

[22] Yang H., Gong C., Miao L., Xu F., A Glucose Biosensor Based on Horseradish Peroxidase
and Glucose Oxidase Co-entrapped in Carbon Nanotubes Modified Electrode
, Int. J. Electrochem. Sci., 12: 4958-4969 (2017).

[23] Gray C.J., Weissenborn M.J., Eyers C.E., Flitsch S.L., Enzymatic Reactions on Immobilised Substrates, Chemical Society Reviews, 42(15): 6378-6405 (2013).

[25] Mohamad N.R., Marzuki N.H.C., Buang N.A., Huyop F., Wahab R.A., An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes, Biotechnology & Biotechnological Equipment, 29(2): 205-220 (2015).

[26] Tischer W., Wedekind F., Immobilized Enzymes: Methods and Applications, Biocatalysis-from Discovery to Application, 18: 95-126 (1999).

[27] Norouzian D., Enzyme Immobilization: the State of Art in Biotechnology, Iranian Journal of Biotechnology, 1(4):197-206 (2003).

[28] Sheldon R., "Cross-Linked Enzyme Aggregates (CLEA® s): Stable and Recyclable Biocatalysts," Portland Press Limited; (2007).

[29] Buchholz K., Klein J., [1] Characterization of Immobilized Biocatalysts, Methods in Enzymology, 135: 3-30 (1987).

[30] Li S., Hu J., Liu B., Use of Chemically Modified PMMA Microspheres for Enzyme Immobilization, Biosystems, 77(1): 25-32 (2004).

[31] Foresti M., Ferreira M., Chitosan-Immobilized Lipases for the Catalysis of Fatty Acid Esterifications, Enzyme and Microbial Technology, 40(4):769-777 (2007).

[32] Balcão V.M., Paiva A.L., Malcata F.X., Bioreactors with Immobilized Lipases: State of the Art, Enzyme and Microbial Technology, 18(6): 392-416 (1996).

[33] De Lathouder K., van Benthem D., Wallin S., Mateo C., Lafuente R.F., Guisan J., Polyethyleneimine (PEI) Functionalized Ceramic Monoliths as Enzyme Carriers: Preparation and Performance, Journal of Molecular Catalysis B: Enzymatic, 50(1): 20-27 (2008).

[34] Spahn C., Minteer S.D., Enzyme Immobilization in Biotechnology, Recent Patents on Engineering, 2(3):195-200 (2008).

[35] Khan A.A., Alzohairy M.A., Recent Advances and Applications of Immobilized Enzyme Technologies: A Review, Res. J. Biol. Sci., 5(8): 565-575 (2010).

[36] Cao L., van Langen L., Sheldon R.A., Immobilised Enzymes: Carrier-Bound or Carrier-Free? Current opinion in Biotechnology, 14(4):387-394 (2003).

[37] Ittrat P., Chacho T., Pholprayoon J., Suttiwarayanon N., Charoenpanich J., Application of Agriculture Waste as a Support for Lipase Immobilization, Biocatalysis and Agricultural Biotechnology, 3(3): 77-82 (2014).

[38] Wu C., Zhou G., Jiang X., Ma J., Zhang H., Song H., Active Biocatalysts Based on Candida Rugosa lipase Immobilized in Vesicular Silica, Process Biochemistry, 47(6): 953-959 (2012).

[39] Kim J., Grate J.W., Wang P., Nanostructures for Enzyme Stabilization, Chemical Engineering Science, 61(3):1017-1026 (2006).

[40] Khan A.A., Akhtar S., Husain Q., Direct Immobilization of Polyphenol Oxidases on Celite 545 from Ammonium Sulphate Fractionated Proteins of Potato (Solanum tuberosum), Journal of Molecular Catalysis B: Enzymatic, 40(1):58-63 (2006).

[42] Datta S., Christena L.R., Rajaram Y.R.S., Enzyme Immobilization: an Overview on Techniques and Support Materials, 3 Biotech., 3(1): 1-9 (2013).

[43] Gorecka E., Jastrzębska M., Immobilization Techniques and Biopolymer Carriers, Biotechnology and Food Science, 75(1): 65-86 (2011).

[44] Lee C.-H., Lin T.-S., Mou C.-Y., Mesoporous Materials for Encapsulating Enzymes, Nano Today., 4(2): 165-179 (2009).

[45] Wang A., Wang H., Zhu S., Zhou C., Du Z., Shen S., An Efficient Immobilizing Technique of Penicillin Acylase with Combining Mesocellular Silica Foams Support and p-Benzoquinone Cross Linker, Bioprocess and Biosystems Engineering, 31(5):509-517 (2008).

[47] Han Y.D., Jang Y.H., Yoon H.C., Cascadic Multienzyme Reaction-Based Electrochemical Biosensors, Biosensors Based on Aptamers and Enzymes: Springer, 8: 221-251 (2013).

[48] Sassolas A., Blum L.J., Leca-Bouvier B.D., Immobilization Strategies to Develop Enzymatic Biosensors, Biotechnology Advances, 30(3):489-511 (2012).

[49] Jesionowski T., Zdarta J., Krajewska B., Enzyme Immobilization by Adsorption: A Review, Adsorption, 20(5-6): 801-821 (2014).

[50] Choi M.M., Progress in Enzyme-Based Biosensors Using Optical Transducers, Microchimica Acta, 148(3):107-132 (2004).

[51] Klotzbach T.L., Watt M., Ansari Y., Minteer S.D., Improving the Microenvironment for Enzyme Immobilization at Electrodes by Hydrophobically Modifying Chitosan and Nafion® Polymers, Journal of Membrane Science, 311(1): 81-88 (2008).

[52] Aehle W.. "Enzymes in Industry: Production and Applications", John Wiley & Sons, Inc., (2007).

[53] Costa S., Azevedo H.S., Reis R.L., "17 Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications”, Wiely (2005).

[54] Won K., Kim S., Kim K.-J., Park H.W., Moon S.-J., Optimization of Lipase Entrapment in Ca-Alginate Gel Beads, Process Biochemistry, 40(6): 2149-2154 (2005).

[55] Shen Q., Yang R., Hua X., Ye F., Zhang W., Zhao W., Gelatin-Templated Biomimetic Calcification for β-Galactosidase Immobilization, Process Biochemistry, 46(8):1565-1571 (2011).

[56] Gao S., Wang Y., Diao X., Luo G., Dai Y., Effect of Pore Diameter and Cross-Linking Method on the Immobilization Efficiency of Candida Rugosa Lipase in SBA-15, Bioresource Technology, 101(11):3830-3837 (2010).

[57] López A., Lázaro N., Marqués A.M., The Interphase Technique: A Simple Method of Cell Immobilization in Gel-Beads, J. Microbiol Methods., 30(3): 231-4 (1997).

[59] Banu O., "Immobilization of Lipase from Candida Rugosa on Hydrophobic and Hydrophilic Supports", Ýzmir Institute of Technology, (2001). [Turki]

[60] Zhai R., Zhang B., Wan Y., Li C., Wang J., Liu J., Chitosan–Halloysite Hybrid-Nanotubes: Horseradish Peroxidase Immobilization and Applications in Phenol Removal, Chemical Engineering Journal, 214:304-309 (2013).

[61] Honda T., Miyazaki M., Nakamura H., Maeda H., Immobilization of Enzymes on a Microchannel Surface Through Cross-Linking Polymerization, Chemical Communications, 40: 5062-5064 (2005).

[62] Hanefeld U., Gardossi L., Magner E., Understanding Enzyme Immobilisation, Chemical Society Reviews., 38(2):453-468 (2009).

[63] Sheldon R.A., Characteristic Features and Biotechnological Applications of Cross-Linked Enzyme Aggregates (CLEAs), Appl Microbiol Biotechnol., 92(3):467-477 (2011).

[64] Migneault I., Dartiguenave C., Bertrand M.J., Waldron K.C., Glutaraldehyde: Behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking. Biotechniques, 37(5):790-806 (2004).

[65] Öztürk B., “Immobilization of Lipase from Candida Rugosa on Hydrophobic and Hydrophilic Supports", İzmir Institute of Technology; (2001).

[66] Huang L., Cheng Z.-M., Immobilization of Lipase on Chemically Modified Bimodal Ceramic Foams for Olive Oil Hydrolysis, Chemical Engineering Journal, 144(1):103-109 (2008).

[67] Sakai S., Liu Y., Yamaguchi T., Watanabe R., Kawabe M., Kawakami K., Immobilization of Pseudomonas Cepacia Lipase Onto Electrospun Polyacrylonitrile Fibers Through Physical Adsorption and Application to Transesterification in Nonaqueous Solvent, Biotechnol Lett., 32(8):1059-1062 (2010).

[68] Park J.-M., Kim M., Park H.-S., Jang A., Min J., Kim Y.-H., Immobilization of Lysozyme-CLEA onto Electrospun Chitosan Nanofiber for Effective Antibacterial Applications, International journal of Biological Macromolecules, 54: 37-43 (2013).

[69] Berezhetskyy A., Sosovska O., Durrieu C., Chovelon J.-M., Dzyadevych S., Tran-Minh C., Alkaline Phosphatase Conductometric Biosensor for Heavy-Metal Ions Determination, Irbm., 29(2):136-40 (2008).

[70] Zhang Z., Xia S., Leonard D., Jaffrezic-Renault N., Zhang J., Bessueille F., A Novel Nitrite Biosensor Based on Conductometric Electrode Modified with Cytochrome c Nitrite Reductase Composite Membrane, Biosensors and Bioelectronics, 24(6):1574-9 (2009).

[71] Gogol E., Evtugyn G., Marty J.-L., Budnikov H., Winter V., Amperometric Biosensors Based on Nafion Coated Screen-Printed Electrodes for the Determination of Cholinesterase Inhibitors, Talanta., 53(2):379-389 (2000).

[72] Andreescu S., Marty J.-L., Twenty Years Research in Cholinesterase Biosensors: from Basic Research to Practical Applications, Biomolecular Engineering, 23: 11-15 (2006).

[73] Luo X., Morrin A., Killard A.J., Smyth M.R., Application of Nanoparticles in Electrochemical Sensors and Biosensors, Electroanalysis, 18(4): 319-326 (2006).

[74] Ansari S.A., Husain Q., Potential Applications of Enzymes Immobilized on/in Nano Materials: A Review, Biotechnology Advances, 30(3):512-523 (2012).

[75] Kerman K., Saito M., Tamiya E., Yamamura S., Takamura Y., Nanomaterial-Based Electrochemical Biosensors for Medical Applications, TrAC Trends in Analytical Chemistry, 27(7): 585-592 (2008).

[76] Cipolatti E.P., Silva M.J.A., Klein M., Feddern V., Feltes M.M.C., Oliveira J.V., et al. Current Status and Trends in Enzymatic Nanoimmobilization, Journal of Molecular Catalysis B: Enzymatic, 99:56-67 (2014).

[77] Novoselov K.S., Fal V., Colombo L., Gellert P., Schwab M., Kim K., A Roadmap for Graphene, Nature, 490(7419):192-200 (2012).

[78] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., et al. Electric Field Effect in Atomically Thin Carbon Films, Science, 306(5696):666-9 (2004).

[79] Kuila T., Bose S., Khanra P., Mishra A.K., Kim N.H., Lee J.H., Recent Advances in Graphene-Based Bosensors, Biosensors and Bioelectronics, 26(12):4637-4648 (2011).

[80] Pumera M., Graphene in Biosensing, MaterialsToday, 14(7): 308-315 (2011).

[81] Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y., Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis, 22(10):1027-1036 (2010).

[82] Su C.-Y., Lu A.-Y., Xu Y., Chen F.-R., Khlobystov A.N., Li .L-J., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano, 5(3):2332-9 (2011).

[83] Reina A., Jia X., Ho J., Nezich D., Son H., Bulovic V., et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, 9(1):30-55
(2008).

[84] Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., "Improved Synthesis of Graphene Oxide", Wiely (2010) pp. 125-129.

[85] Hummers Jr W.S., Offeman R.E., Preparation of Graphitic Oxide, Journal of the American Chemical Society, 80(6):1339- 44 (1958).

[87] Gao H., Duan H., 2D and 3D Graphene Materials: Preparation and Bioelectrochemical Applications, Biosensors and Bioelectronics, 65:404-19 (2015).

[89] Liu Y., Yu D., Zeng C., Miao Z., Dai L., Biocompatible Graphene Oxide-Based Glucose Biosensors, Langmuir, 26(9):61 , 58-60 (2010)

[90] Shan C., Yang H., Song J., Han D., Ivaska A., Niu L., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene, Analytical Chemistry, 81(6): 2378-82 (2009).

[91] Wu H., Wang J., Kang X., Wang C., Wang D., Liu J., Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Flm, Talanta., 80(1):403-6 (2009).

[92] Iijima S., Carbon Nanotubes: Past, Present, and Future, Physica B: Condensed Matter., 323(1):1-5 (2002).

[93] Feng W., Ji P., Enzymes Immobilized on Carbon Nanotubes, Biotechnology Advances, 29(6): 889-95 (2011).

[94] Wang S., Zhang Q., Wang R., Yoon S., Ahn J., Yang D., Multi-Walled Carbon Nanotubes for the Immobilization of Enzyme in Glucose Biosensors, Electrochemistry Communications, 5(9):800-3 (2003).

[95] Lee G.-J., Choi S.K., Choi S., Park J.H., Park H.-K., Enzyme-Immobilized CNT Network Probe for in Vivo Neurotransmitter Detection, Nanoscale Biocatalysis: Methods and Protocols, 33 (4) :65-75 (2011).

[96] Zhang F.-F., Wang X.-L., Li C.-X., Li X.-H., Wan Q., Xian Y.-Z., et al. Assay for Uric Acid Level in Rat Striatum by a Reagentless Biosensor Based on Functionalized Multi-Wall Carbon Nanotubes with Tin Oxide, Analytical and Bioanalytical Chemistry, 382(6):1368-73 (2005).

[98] Rawal R., Chawla S., Chauhan N., Dahiya T., Pundir C., Construction of Amperometric Uric Acid Biosensor Based on Uricase Immobilized on PBNPs/cMWCNT/PANI/Au Composite, International Journal of Biological Macromolecules, 50(1):112-8 (2012).

[99] Jain K.,Current Status of Molecular Biosensors, Medical Device Technology, 14(4):10-5 (2003).

[100]   Tiwari P., Bawage S., Singh S., Hamblin M., Avci P., Gold Nanoparticles and Their Applications in Photomedicine, Diagnosis and Therapy, Applications of Nanoscience in Photomedicine: Woodhead Publishing Cambridge,  : 249-66 (2015).

[101] Li Y., Schluesener H.J., Xu S., Gold Nanoparticle-Based Biosensors, Gold Bulletin., 43(1): 29-41 (2010).

[102] Xu J., Zeng F., Wu S., Liu X., Hou C., Tong Z., Gold Nanoparticles Bound on Microgel Particles and Their Application as an Enzyme Support, Nanotechnology, 18(26): 265704 (2007).

[103] Vertegel A.A., Siegel R.W., Dordick J.S., Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme, Langmuir, 20(16):6800-7 (2004).

[104] Mandal S., Phadtare S., Selvakannan P., Pasricha R., Sastry M., Fractal Gold Nanostructures Produced by the Spontaneous Reduction of Chloroaurate Ions in Thermally Evaporated Hexadecylaniline Thin Films, Nanotechnology, 14(8):878-83 (2003).

[105] Phadtare S., Vinod V., Mukhopadhyay K., Kumar A., Rao M., Chaudhari R.V., Immobilization and Biocatalytic Activity of Fungal Protease on Gold Nanoparticle‐Loaded Zeolite Microspheres, Biotechnology and Bioengineering, 85(6):629-37 (2004).

[106] Vicentini F.C., Garcia L.L., Figueiredo-Filho L.C., Janegitz B.C., Fatibello-Filho O.,
A Biosensor Based on Gold Nanoparticles, Dihexadecylphosphate, and Tyrosinase for the Determination of Catechol in Natural Water, Enzyme and Microbial Technology, 84:17-23 (2016).

[107] Chauhan N., Pundir C.S., An Amperometric Uric Acid Biosensor Based on Multiwalled Carbon Nanotube–Gold Nanoparticle Composite, Analytical Biochemistry,413(2):97-103 (2011).

[109] Chen S., Yuan R., Chai Y., Hu F., Electrochemical Sensing of Hydrogen Peroxide Using Metal Nanoparticles: A Review, Microchimica Acta., 180(1-2):15-32 (2013).

[110] Crespilho F.N., Iost R.M., Travain S.A., Oliveira O.N., Zucolotto V., Enzyme Immobilization on Ag Nanoparticles/Polyaniline Nanocomposites, Biosensors and Bioelectronics, 24(10):3073-7 (2009).

[111] Zhang F., Wang X., Ai S., Sun Z., Wan Q., Zhu Z., et al. Immobilization of Uricase on ZnO Nanorods for a Reagentless Uric Acid Biosensor, Analytica Chimica Acta.,519(2):155-60 (2004).

[112] Kochana J., Wapiennik K., Kozak J., Knihnicki P., Pollap A., Woźniakiewicz M., Tyrosinase-Based Biosensor for Determination of Bisphenol A in a Flow-batch System, Talanta, 144:163-70 (2015).

[114] Jaganathan H., Godin B., Biocompatibility Assessment of Si-Based Nano-and Micro-Particles, Advanced Drug Delivery Reviews, 64(15):1800-19 (2012).

[115] de Souza K.C., Mohallem N.D.S., de Souza E., Nanocompósitos Magnéticos: Potencialidades de Aplicações em Biomedicina, Quim Nova., 34(10): 1692-703 (2011).

[116] Magner E., Immobilisation of Enzymes on Mesoporous Silicate Materials, Chemical Society Reviews, 42(15):6213-22 (2013).

[117] Hasanzadeh M., Shadjou N., de la Guardia M., Eskandani M., Sheikhzadeh P., Mesoporous Silica-Based Materials for use in Biosensors, TrAC Trends in Analytical Chemistry, 33:117-29 (2012).

[118] Reis P., Witula T., Holmberg K., Mesoporous Materials as Host for an Entrapped Enzyme, Microporous and Mesoporous Materials, 110(2):355-62 (2008).

[119] Li H., He J., Zhao Y., Wu D., Cai Y., Wei Q.. Immobilization of Glucose Oxidase and Platinum on Mesoporous Silica Nanoparticles for the Fabrication of Glucose Biosensor, Electrochimica Acta, 56(7):2960-5 (2011).

[120] Shimomura T., Itoh T., Sumiya T., Mizukami F., Ono M., Amperometric Biosensor Based on Enzymes Immobilized in Hybrid Mesoporous Membranes for the Determination of Acetylcholine, Enzyme and Microbial Technology, 45(6):443-448 (2009).

[121] Takahashi H., Li B., Sasaki T., Miyazaki C., Kajino T., Inagaki S., Immobilized Enzymes in Ordered Mesoporous Silica Materials and Improvement of Their Stability and Catalytic Activity in an Organic Solvent, Microporous and Mesoporous Materials, 44: 755-762 (2001).

[122] Dhawan G., Sumana G., Malhotra B., Recent Developments in Urea Biosensors, Biochemical Engineering Journal, 44(1):42-52 (2009).

[123] Bosio V.E., Islan G.A., Martínez Y.N., Durán N., Castro G.R., Nanodevices for the Immobilization of Therapeutic Enzymes, Critical Reviews in Biotechnology, 36(3):447-464 (2016).

[124] Kan J., Pan X., Chen C., Polyaniline–Uricase Biosensor Prepared with Template Process, Biosensors and Bioelectronics, 19(12):1635-40 (2004).

[125] Arora K., Sumana G., Saxena V., Gupta R.K., Gupta S., Yakhmi J., et al. Improved Performance of Polyaniline-Uricase Biosensor, Analytica Chimica Acta, 594(1):17-23 (2007).

[127] Naghib S.M., Rabiee M., Omidinia E., Khoshkenara P., Zeini D., Biofunctionalization of Dextran-Based Polymeric Film Surface Through Enzyme Immobilization for Phenylalanine Determination, International Journal of Electrochemical Science, 7: 120-35 (2012).

[128] Turan J., Kesik M., Soylemez S., Goker S., Coskun S., Unalan H.E., et al. An Effective Surface Design Based on a Conjugated Polymer and Silver Nanowires for the Detection of Paraoxon in Tap Water and Milk, Sensors and Actuators B: Chemical, 228:278-86 (2016).

[129] López M.S.-P., Redondo-Gómez E., López-Ruiz B., Electrochemical Enzyme Biosensors Based on Calcium Phosphate Materials for Tyramine Detection in Food Samples, Talanta, 175: 209-216 (2017).

[130] Soldatkin O.O., Stepurska K., Arkhypova V., Soldatkin A., El’Skaya A., Lagarde F., Conductometric Enzyme Biosensor for Patulin Determination, Sensors and Actuators B: Chemical, 239:1010-5 (2017).

[132] Ghourchian H., Moulaie Rad A., Elyasvandi H., A Conductometric Urea Biosensor by Direct Immobilization of Urease on Pt Electrode, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 23(2):55-63 (2004).

[133] Kanyong P., Hughes G., Pemberton R.M., Jackson S.K., Hart J.P., Amperometric Screen-Printed Galactose Biosensor for Cell Toxicity Applications, Analytical Letters., 49(2): 236-244 (2016).

[134] Dalkıran B., Erden P.E., Kılıç E., Electrochemical Biosensing of Galactose Based on Carbon Materials: Graphene Versus Multi-Walled Carbon Nanotubes, Analytical andBioanalytical Chemistry, 408(16):4329-39 (2016).

[135] Fang Y., Bullock H., Lee S.A., Sekar N., Eiteman M.A., Whitman W.B., et al. Detection of Methyl Salicylate Using bi-Enzyme Electrochemical Sensor Consisting Salicylate Hydroxylase and Tyrosinase, Biosensors and Bioelectronics, 85:603-10 (2016).

[137] Wang Z., Luo X., Wan Q., Wu K., Yang N., Versatile Matrix for Constructing Enzyme-Based Biosensors, ACS Applied Materials & Interfaces, 6(19):17296-305 (2014).

[139] Povedano E., Cincotto F.H., Parrado C., Díez P., Sánchez A., Canevari T.C., Decoration of Reduced Graphene Oxide with Rhodium Nanoparticles for the Design of a Sensitive Electrochemical Enzyme Biosensor for 17β-Estradiol, Biosensors and Bioelectronics, 89: 343-351 (2017).

[140] Hasanzadeh M., Hassanpour S., Nahr A.S., Shadjou N., Mokhtarzadeh A., Mohammadi J., Proline Dehydrogenase-Entrapped Mesoporous Magnetic Silica Nanomaterial for Electrochemical Biosensing of L-Proline in Bological Fluids, Enzyme and Microbial Technology, 105: 64-76 (2017).

[141] Li Y., Zhang Y., Han G., Xiao Y., Li M., Zhou W., An Acetylcholinesterase Biosensor Based on Graphene/Polyaniline Composite Film for Detection of Pesticides, Chinese Journal of Chemistry, 34(1):82-88 (2016).

[142] Mross S., Pierrat S., Zimmermann T., Kraft M., Microfluidic Enzymatic Biosensing Systems: A Review, Biosens Bioelectron, 70: 376-391 (2015).

[144] Fornera S., Kuhn P., Lombardi D., Schlüter A.D., Dittrich P.S., Walde P., Sequential Immobilization of Enzymes in Microfluidic Channels for Cascade Reactions, Chem.Plus.Chem., 77(2):98-101 (2012).

[145] Duford D.A., Xi Y., Salin E.D., Enzyme Inhibition-Based Determination of Pesticide Residues in Vegetable and Soil in Centrifugal Microfluidic Devices, Analytical Chemistry, 85(16): 7834-7841 (2013).

[146] Dolmacı N., Çete S., Arslan F., Yaşar A., An Amperometric Biosensor for Fish Freshness Detection from Xanthine Oxidase Immobilized in Polypyrrole-Polyvinylsulphonate Film, Artificial Cells, Blood Substitutes, and Biotechnology, 40(4): 275-279 (2012).

[147] Lawal A., Adeloju S., Polypyrrole-Based Potentiometric Phosphate Biosensor, Journal of Molecular Catalysis B: Enzymatic, 63(1): 45-49 (2010).

[148] Ges I.A., Baudenbacher F., Enzyme-Coated Microelectrodes to Monitor Lactate Production in a Nanoliter Microfluidic Cell Culture Device, Biosens Bioelectron, 26(2): 828-833 (2010).

[149] Rodrigues N.P., Sakai Y., Fujii T., Cell-Based Microfluidic Biochip for the Electrochemical Real-Time Monitoring of Glucose and Oxygen, Sensors and Actuators B: Chemical, 132(2): 608-613 (2008).

[150] Cheng W., Klauke N., Sedgwick H., Smith G.L., Cooper J.M., Metabolic Monitoring of
the Electrically Stimulated Single Heart Cell within a Microfluidic Platform
, Lab on a Chip., 6(11): 1424-1431 (2006).

[151] Bäcker M., Rakowski D., Poghossian A., Biselli M., Wagner P., Schöning M.J., Chip-Based mperometric Enzyme Sensor System for Monitoring of Bioprocesses by Flow-Injection Analysis, Journal of Biotechnology, 163(4): 371-376 (2013).

[152] Mishra R.K., Dominguez R.B., Bhand S., Muñoz R., Marty J-L., A Novel Automated Flow-Based Biosensor for the Determination of Organophosphate Pesticides in Milk, Biosensors and Bioelectronics, 32(1):56-61 (2012).