مروری بر مدل سازی و بهینه سازی واحد شکست کاتالیستی بستر سیال

نوع مقاله: مروری

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی فومن، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

2 گروه پژوهش، توسعه و کنترل فرایندها، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

فرایند شکست کاتالیستی بستر سیال یکی از مهم­ ترین فرایندهای پالایشگاهی است که خوراک ­های هیدروکربنی سنگین را به فراورده­ های سبک­ تر تبدیل می­ کند. به ­دلیل اهمیت بالای این فرایند، پژوهشگران زیادی جنبه ­های گوناگون این فرایند را مورد بررسی قرار داده اند. در این مقاله مرور جامعی بر مطالعه­ های مربوطه انجام شده است. تمرکز اصلی این بررسی روی سه دسته شامل شبکه­ های سینتیکی، مدل­ سازی پایا و ناپایا و بهینه­ سازی فرایند است. مرور پژوهش­ ها از سال 1970 میلادی نشان می­ دهد که بررسی­ های سینتیکی اساساً بر اساس روش توده­ ای بودند که در آن مخلوط واکنش با طبقه­ بندی­ های گوناگون به گروه­ های اصلی تقسیم می­ شود که ممکن است بر اساس تعداد کربن گونه­ ها یا نوع اجزاء تعریف شود. تعداد توده­ های مربوطه به طور عمده از 3 تا 19 توده محدود می­ شدند. افزون بر این در مدل­ سازی فرایند به طور معمول دو تجهیز اصلی شامل بالابرنده ­ی راکتور و احیاءکننده در نظر گرفته شده ­اند. مدل­ های اولیه­ ی احیاءکننده شامل مدل­ های احیاءکننده­ ی تک فازی، تماس ساده با جریان لوله ­ای و واکنش ­های پراکندگی با مخزن­ های متوالی در مطالعه­ ها در نظر گرفته شده­ اند. همچنین مطالعه­ های گوناگونی به­ منظور در نظر گرفتن تجهیزهای بیش ­تر انجام شد. در برخی از مطالعه­ ها استفاده از معادله­ های مومنتم افزون بر معادله­ های جرم و انرژی در احیاءکننده نیز در نظر گرفته شد که چالش اصلی در توسعه­ ی مدل مربوطه تعیین پارامترهای مورد استفاده بود. بررسی تأثیر دمای کاتالیست ورودی و نسبت کاتالیست به خوراک نیز در پژوهش ­های دیگر انجام شده است. بهینه­ سازی فرایند نیز به طور معمول در شرایط پایا بوده است و بهینه­ سازی دینامیکی کم­ تر استفاده شده است. الگوریتم­ های گوناگونی از جمله ژنتیک و ازدحام ذره­ ها مورد بررسی و مقایسه قرار گرفتند. دیده شد که الگوریتم ازدحام ذره­ ها از الگوریتم ژنتیک ساده ­تر تنظیم می­ شود و کار کردن با آن راحت­ تر است.

کلیدواژه‌ها

موضوعات


 [1] Mythily M., Manamalli D., Raja Nandhini R., Dynamic Modeling and Improvements in the Tuning of PI Controllers for Fluidized Catalytic Cracking Unit., Wseas Transactions on Systems and Control, 10: 297-306 (2015).

[2] Sildir H., Arkun Y., Canan U., Celebi S., Karani U., Er I., Dynamic Modeling and Optimization of an Industrial Fluid Catalytic Cracker, Journal of Process Control, 31: 30-44 (2015).

[3] Bispo V.D.d.S., Silva E.S.R.d.L., Meleiro L.A.d.C., Modeling, Optimization and Control of a FCC Unit Using Neural Networks and Evolutionary Methods, Engevista, 16(1): 70-90 (2013).

[4] Han I.-S., Chung C.-B., Dynamic Modeling and Simulation of a Fluidized Catalytic Cracking Process. Part I: Process Modeling, Chemical Engineering Science, 56(5): 1951-1971 (2001).

[5] Fernandes J., Verstraete J.J., Pinheiro C.C., Oliveira N., Ribeiro F.R., Mechanistic Dynamic Modelling of an Industrial FCC Unit, Computer Aided Chemical Engineering, 20: 589-594 (2005).

[6] Cerqueira H., Caeiro G., Costa L., Ribeiro F.R., Deactivation of FCC Catalysts, Journal of Molecular Catalysis A: Chemical, 292(1-2): 1-13 (2008).

[7] Raj Kumar Gupta V.K., Srivastava V.K., Modeling of Fluid Catalytic Cracking Riser Reactor: A Review, International Journal of Chemical Reactor Engineering, 8: 1-39 (2010).

[8] Shah, M.T., Utikar, R.P., Pareek, V.K., Evans, G.M., Joshi, J.B., Computational Fluid Dynamic Modelling of FCC riser: A Review, Chemical Engineering Research and Design, 111: 403-448 (2016).

[10] Mohammadikhah, R., Zahedi, S., Ganji, H., Ahmadi, M., Improvement of Hydrodynamics Performance of Naphtha Catalytic Reforming Reactors Using CFD, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 33(3): 63-76 (2014).

[11] Sorood ZahediAbghari A., SeifMohaddecy R., AbdulazizAlsairafi A, Experimental and Modeling Study of a Catalytic Reforming Unit, Journal of the Taiwan Institute of Chemical Engineers, 45(4): 1411-1420 (2014).

[12] Ghasemi H.M., Gilani N., Daryan J.T., CFD Simulation of Propane Thermal Cracking Furnace and Reactor: A Case Study, International Journal of ChemicalReactor Engineering, 15(3): (2016).

[13] Ghasemi H.M., Gilani N., Daryan J.T., Investigating the Effect of Fuel Rate Variation in an Industrial Thermal Cracking Furnace With Alternative Arrangement of Wall Burners Using Computational Fluid Dynamics Simulation, Journal of Thermal Science and Engineering Applications, 9(4): 1-11(2017).

[14] Chen C., Bolun Y., Jun Y., Zhiwen W., Longyan W., Establishment and Solution of Eight-Lump Kinetic Model for FCC Gasoline Secondary Reaction Using Particle Swarm Optimization, Fuel, 86(15): 2325-2332 (2007).

[15] Gary C., Minas R.A., Karlton J.H., Stephen B.J., Future Directions in Modeling the FCC Process: An Emphasis on Product Quality, Chemical Engineering Science, 54(13-14): 2753-2764 (1999).

[16] Quann R.J., Jaffe S.B., Structure-Oriented Lumping: Describing the Chemistry of Complex Hydrocarbon Mixtures, Industrial & Engineering Chemistry Research, 31(11):2483-2497 (1992).

[17] Moustafa T.M., Froment G.F., Kinetic Modeling of Coke Formation and Deactivation
in the Catalytic Cracking of Vacuum Gas Oil
, Industrial & Engineering Chemistry Research, 42(1): 14-25 (2003).

[18] Joana L.F., Jan J.V., Carla I.C.P., Nuno M.C.O., Fernando R.R., Dynamic Modelling of an Industrial R2R FCC Unit, Chemical Engineering Science, 62(4): 1184-1198 (2007).

[19] Pinheiro C., Lemos F., Ribeiro F.R., Dynamic Modelling and Network Simulation of n-Heptane Catalytic Cracking: Influence of Kinetic Parameters, Chemical Engineering Science, 54(11): 1735-1750 (1999).

[20] Carabineiro H., Pinheiro C.I.C., Lemos F., Ramôa Ribeiro F., Transient Microkinetic Modelling of n-Heptane Catalytic Cracking over H-USY Zeolite, Chemical Engineering Science, 59(6): 1221-1232 (2004).

[21] Weekman V.W., Nace D.M., Kinetics of Catalytic Cracking sSelectivity in Fixed, Moving, and Fluid Bed Reactors, AIChE Journal, 16(3): 397-404 (1970).

[22] Wei J., Prater C.D., A New Approach to First‐Order Chemical Reaction Systems, AIChE Journal, 9(1): 77-81 (1963).

[23] Jacob, S.M., Gross, B., Voltz, S.E., Weekman, V.W.., A Lumping and Reaction Scheme for Catalytic Cracking, AIChE Journal, 22(4): 701-713 (1976).

[24] Naik D.V., Karthik V., Kumar V., Prasad B., Garg M.O., Kinetic Modeling for Catalytic Crackingof Pyrolysis Oils with VGO in a FCC Unit, Chemical Engineering Science, 170:790-798 (2017).

[25] Theologos K., Markatos N., Advanced Modeling of Fluid Catalytic Cracking Riser‐Type Reactors, AIChE Journal, 39(6): 1007-1017 (1993).

[26] Lee L.S., Yu W.C., Tsung N.H., Wen Y., Four‐Lumpkinetic Model for Fluid Catalytic Cracking Process, The Canadian Journal of Chemical Engineering, 67(4): 615-619 (1989).

[27] Yen L., Wrench R., Ong A., Reaction Kinetic Correlation Equation Predicts Fluid Catalytic Cracking Coke Yields, Oil Gas J.; (United States), 86(2): 67 -70 (1988).

[28] Jorge A.J., Felipe L.I., Enrique A.R., Juan C.M.M., A Strategy for Kinetic Parameter Estimation in the Fluid Catalytic Cracking Process, Industrial & Engineering Chemistry Research, 36(12): 5170-5174 (1997).

[29] Ancheyta-Juárez J., Murillo-Hernández J.A., A Simple Method for Estimating Gasoline, Gas, and Coke Yields in FCC Processes, Energy & Fuels, 14(2): 373-379 (2000).

[30] Ancheyta-Juarez J., Sotelo-Boyas R., Estimation of Kinetic Constants of a Five-Lump Model for Fluid Catalytic Cracking Process Using Simpler Sub-Models, Energy & Fuels, 14(6): 1226-1231 (2000).

[31] Fabulic Ruszkowski M., Gomzi Z., Tomic T., 4-Lump Kinetic Model for Hydrotreated Gas Oil Catalytic Cracking, Chemical and Biochemical Engineering Quarterly, 20(1): 61-68 (2006).

[32] Bollas G.M., Lappas A.A., Iatridis D.K., Vasalos I.A., Five-Lump Kinetic Model with Selective Catalyst Deactivation for the Prediction of the Product Selectivity in the Fluid Catalytic Cracking Process, Catalysis Today, 127(1): 31-43 (2007).

[33] Sertić-Bionda K., Gomzi Z., Mužic M., Modeling of Gas Oil Catalytic Cracking in a Fixed Bed Reactor Using a Five-Lump Kinetic Model, Chemical Engineering Communications, 197(3): 275-288 (2009).

[34] Corella J., Frances E., Analysis of the Riser Reactor of a Fluid Cracking Unit, ACS Publications, 452: 165-182 (1991).

[35] Dupain X., Gamas E.D., Madon R., Kelkar C.P., Makkee M., Moulijn J.A., Aromatic Gas Oil Cracking under Realistic FCC Conditions in a Microriser Reactor, Fuel, 82(13): 1559-1569 (2003).

[36] Larocca M., Ng S., Delasa H., Fast Catalytic Cracking of Heavy Gas Oils: Modeling Coke Deactivation, Industrial & Engineering Chemistryresearch, 29: 171-     (1990).

[37] Ancheyta-Juárez J., López-Isunza F., Aguilar-Rodrı́guez E., 5-Lump Kinetic Model for Gas Oil Catalytic Cracking, Applied Catalysis A: General, 177(2): 227-235 (1999).

[38] Paul D., Thakur R.S., Chaudhari P.K., Simulation of Fcc Riser Reactor using Five Lump Model, Simulation, 8(6): 750-758 (2015).

[39] Takatsuka T., Sato S., Morimoto Y., Hashimoto H., A Reaction Model for Fluidized-Bed Catalytic Cracking of Residual Oil, Int. Chem. Eng., 27(1): 107-116 (1987).

[40] Oliveira L.L., Biscaia E., Catalytic Cracking Kinetic Models. Parameter Estimation and Model Evaluation, Industrial & Engineering Chemistry Research, 28(3): 264-271 (1989).

[41] Coxson P.G., Bischoff K.B., Lumping Strategy. 1. Introductory Techniques and Applicationsof Cluster Analysis, Industrial & Engineering Chemistry Research, 26(6): 1239-1248 (1987).

[42] Heydari M., AleEbrahim H., Dabir B., Study of Seven-Lump Kinetic Model in the Fluid Catalytic Cracking Unit, American Journal of Applied Sciences, 7(1): 71-76 (2010).

[43] Wang S.S., Weng H.X., Mao J.J., Liu F.Y., Investigation of the Lump Kinetic Model for Catalytic IV: Determination of Kinetic Parameters in Heavy Gas Oil Network, ACTA Petrol. Sin. (Petrol. Process. Sect.), 3: 18-25 (1988).

[44] Hagelberg P., Eilos I., Hiltunen J., Lipiäinen K., Niemi V.M., Aittamaa J., Krause A.O.I., Kinetics of Catalytic Cracking with Short Contact Times, Applied Catalysis A: General, 223(1): 73-84 (2002).

[45] Gao, H., Wang, G., Xu, C., Gao, J., Eight-Lump Kinetic Modeling of Vacuum Residue Catalytic Cracking in an Independent Fluid Bed Reactor, Energy & Fuels, 28(10): 6554-6562 (2014).

[46] Zhang R., Li, L., Liu, Z., Ment, X., Nine-Lump Kinetic Study of Catalytic Pyrolysis of Gas Oils Derived from Canadian Synthetic Crude Oil, International Journal of Chemical Engineering, 2016: 1-10 (2016).

[47] Gross B., Jacob S.M., Nace D.M., Voltz S.E., “Simulationof Catalytic Cracking Process”, Google Patents (1976).

[48] Ellis R.C., Li X., Riggs J.B., Modeling and Optimization of a Model IV Fluidized Catalytic Cracking Unit, AIChE Journal, 44(9): 2068-2079 (1998).

[49] Du Y., Yang Q., Zhang C., Yang C., Ten-Lump Kinetic Model for the Two-Stage Riser Catalytic Cracking for Maximizing Propylene Yield (TMP) Process, Applied Petrochemical Research, 5(4): 297-303 (2015).

[50] Mao X., Weng H., Zhu Z., Wang S., Zhu K., Investigation of the Lumped Kinetic Model for Catalytic Cracking: III. Analyzing Light Oilfeed and Products and Measurement of Kinetic Constants, Acta Pet. Sin.(Pet. Process Sect.), 1(11): (1985).

[51] Wojciechowski B.W., Corma A., “Catalytic Cracking: Catalysts, Chemistry, and Kinetics”, AIChE Journal, 33(9): 1581-1581 (1986).

[52] Feiyue W., Huixin W., The Establishmentof a Lumped Kinetic Model for FDFCC, Petroleum Science and Technology, 30(10): 1031-1039 (2012).

[53] Deng X.L., S.Y., Wang LY, Wang GL, Meng FD., “Study on a Kinetic Model of Resid Catalytic Cracking”, Petrol Process Petrochem (1994).

[54] Sa, Y., Liang, X., Chen, X., Liu, J., Study on the 13-Lump Kinetic Model for Residual Catalytic Cracking, The Selective Papers in Memorial of 30th Anniversary of the Fluid Catalytic Cracking Process in China”, Luoyan Petrochemical Engineering Corporation, Luoyang, China, P. 145 (1995).

[55] Sun, T.D., Zhong, X., Chen, Y., Yu, B.T., Study and Application of a Lumping FCC Kinetics Model for Vacuum Residue, Petrol. Process. Petrochem.(China), 32: 41-44 (2001).

[56] Pitault, I., Nevicato D., Forissier M., Bernard J.R., Kinetic Model Based on a Molecular Description for Catalytic Cracking of Vacuum Ggas Oil, Chemical Engineering Science, 49(24): 4249-4262 (1994).

[57] Gupta R.K., Kumar V., Srivastava V., A New Generic Approach for the Modeling of Fluid Catalytic Cracking (FCC) Riser Reactor, Chemical Engineering Science, 62(17): 4510-4528 (2007).

[58] Lappas, A., Patiaka, D.T., Dimitriadis, B.D., Vasalos, I.A., Separation, Characterization and Catalytic Cracking Kinetics of Aromatic Fractions Obtained from FCC Feedstocks, Applied Catalysis A: General, 152(1): 7-26 (1997).

[59] De Lasa H.I., Grace J.R., The Influence of the Freeboard Region in a Fluidized Bed Catalytic Cracking Regenerator, AIChE Journal, 25(6): 984-991 (1979).

[60] Errazu A., DeLasa H., Sarti F., Fluidized-bed Catalytic Cracking Regenerator Model-Grid Effects, Canadian Journal of Chemical Engineering, 57(2): 191-197 (1979).

[61]    Morley K., De Lasa H., Regeneration of Cracking Catalyst Influence of the Homogeneous
CO Postcombustion Reaction
, The Canadian Journal of Chemical Engineering, 66(3): 428-432 (1988).

[63] Arthur J., Reactions between Carbon and Oxygen, Transactions of the Faraday Society, 47: 164-178 (1951).

[64] Rowe P., An X-Ray Study of Bubbles in Fluidized Beds, Trans. Inst. Chem. Eng., 43: T157-T175 (1965).

[65] Weisz P.B., Goodwin R.B., Combustion of Carbonaceous Deposits Within Porous Catalyst Particles: II. Intrinsic Burning Rate, Journal of Catalysis, 6(2): 227-236 (1966).

[66] Faltsi-Saravelou O., Vasalos I., Dimogiorgas G., FBSim: A Model for Fluidized Bed Simulation—II. Simulation of an Industrial Fluidized Catalytic Cracking Regenerator, Computers & Chemical Engineering, 15(9): 647-656 (1991).

[67] Maciel Filho R., Batista L.L., Fusco M., A Fast Fluidized Bed Reactor for Industrial FCC Regenerator, Chemical Engineering Science, 51(10): 1807-1816 (1996).

[68] Bai, D., Xu, J.X., Jin, Y., Yu, Z., Simulation of FCC Catalyst Regeneration in a Riser Regenerator, Chemical Engineering Journal, 71(2): 97-109 (1998).

[69] Schwarz M.P., Lee J., Reactive CFD Simulation of an FCC Regenerator, AsiaPacific Journal of Chemical Engineering, 2(5): 347-354 (2007).

[70] Clark S., Snider D., Fletcher R.. Multiphase Simulation of a Commercial Fluidized Catalytic Cracking Regenerator. in AIChE Annual Meeting Conference Proceedings, AIChE, Pittsburgh, P. 9 (2012).

[71] Fletcher R., Clark S., CFD Regenerator Case Study: Fluid Dynamics with Coke Combustion Kinetics, in American Fuel andPetrochemical Manufacturers’ Cat Cracker Seminar and Exhibition, Houston, TX. (2012).

[72] Parker J., Blaser P., Validation and Utilization of CFD for Reducing CO Emissions from an FCC Regenerator,in “5th Annual TRC-Idemitsu Workshop, Abu Dhabi, UAE (Feb 2015).

[73] Fletcher, R., Clark, S., Parker, J., Blaster, P., Identifying the Root Cause of Afterburn in Fluidized Catalytic Crackers, in “American Fuel and Petrochemical Manufacturers' Cat Cracker Annual Meeting” (Mar. 2016).

[74] Morley K., De Lasa H., On the Determination of Kinetic Parameters for the Regeneration of Cracking Catalyst, The Canadian Journal of Chemical Engineering, 65(5): 773-777 (1987).

[75] Blasetti A., de Lasa H., FCC Riser Unit Operated in the Heat-Transfer Mode: Kinetic Modeling, Industrial & Engineering Chemistry Research, 36(8): 3223-3229 (1997).

[76] Farag H., Blasetti A., de Lasa H., Catalytic Cracking with FCCT Loaded with Tin Metal Traps. Adsorption Constants for Gas Oil, Gasoline and Light Gases, Industrial & Engineering Chemistry Research, 33(12): 3131-3140 (1994).

[77] Pitault I., Forissier M., Bernard J.R., Determination de Constantes Cinetiques du Craquage Catalytique Par la Modelisation du Test de Microactivite (MAT), The Canadian Journal of Chemical Engineering, 73(4): 498-504 (1995).

[78] De Lasa, H.I., Errazu, A., Barreiro, E., Solioz, S., Analysis of Fluidized Bed Catalytic Cracking Regenerator Models in an Industrial Scale Unit, The Canadian Journal of Chemical Engineering, 59(4): 549-553 (1981).

[78] Krishnaiah D., Bono A., Sarbatly R., Steady State Simulation of a Fluid Catalytic Cracking Unit, Journal of Applied Sciences, 7(15): 2137-2145 (2007).

[80] Ali H., Rohani S., Corriou J., Modelling and Control of a Riser Type Fluid Catalytic Cracking (FCC) Unit, Chemical Engineering Research and Design, 75(4): 401-412 (1997).

[81] Nayak S.V., Joshi S.L., Ranade V.V., Modeling of Vaporization and Cracking of Liquid Oil Injected in a Gas–Solid Riser, Chemical Engineering Science, 60(22): 6049-6066 (2005).

[82] Ahari J.S., Farshi A., Forsat K., A Mathematical Modeling of the Riser Reactor in Industrial FCC Unit, Petroleum and Coal, 50(2): 15-24 (2008).

[83] Lopes, G.C., Rosa, L.M., Mori, M., Nunhez, J.R., Martignoni, W.P., Three-Dimensional Modeling of Fluid Catalytic Cracking Industrial Riser Flow and Reactions, Computers & Chemical Engineering, 35(11): 2159-2168 (2011).

[84]. McFarlane, R.C., Reineman, R.C., Bartee, J.F., Georgakis, C., Dynamic Simulator for a Model IV Fluid Catalytic Cracking Unit, Computers & Chemical Engineering, 17(3): 275-300 (1993).

[85] Arbel A., Huang, Z., Rinard, I.H., Shinnar, R., Spare, A.V., Dynamic and Control of Fluidized Catalytic Crackers. 1. Modeling of the Current Generation of FCC's, Industrial & Engineering Chemistry Research, 34(4): 1228-1243 (1995).

[86] Elnashaie S., Mohamed N., Kamal M., Simulation and Static Bifurcation behavior of Industrial FCC Units, Chemical Engineering Communications, 191(6): 813-831 (2004).

[87] Secchi A.R., et al., A Dynamic Model for a FCC UOP Stacked Converter Unit, Computers & Chemical Engineering, 25(4): 851-858 (2001).

[88] Kunii D., Levenspiel O., Fluidized Reactor Models. 1. For Bubbling Beds of Fine, Intermediate, and Large Particles. 2. For the Lean Phase: Freeboard and Fast Fluidization, Industrial & Engineering Chemistry Research, 29(7): 1226-1234 (1990).

[90] Abul-Hamayel M.A., Kinetic Modeling of High-Severity Fluidized Catalytic Cracking, Fuel, 82(9): 1113-1118 (2003).

[91] Rao R.M., Rengaswamy R., Suresh A.K., Balaraman K.S., Industrial Experience with Object-Oriented Modelling: FCCcase Study, Chemical Engineering Research and Design, 82(4): 527-552 (2004).

[92] Fernandes J.L., Pinheiro C.I.C., Oliveira N., Ramôa Ribeiro F., Multiplicity of Steady States in an UOP FCC Unit with High Efficiency Regenerator, Elsevier, 21: 1575-1580 (2006).

[93] Fernandes J.L., Pinheiro C.I.C., Oliveira N., Neto A.I., Ramôa Ribeiro F., Steady State Multiplicity in an UOP FCC Unit with High-Efficiency Regenerator, Elsevier, 22: 6308-6322 (2007).

[94] Heydari M., Ebrahim H.A., Dabir B., Modeling of an Industrial Riser in the Fluid Catalytic Cracking Unit, American Journal of Applied Sciences, 7(2): 221-226 (2010).

[95] Ali H., Rohani S., Dynamic Modeling and Simulation of a Riser‐Type Fluid Catalytic Cracking Unit, Chemical Engineering & Technology, 20(2): 118-130 (1997).

[96] Fernandes J.L., Domingues L.H., Pinheiro C.I.C., Oliveira N.M.C., RamôaRibeiro F., Influence of Different Catalyst Deactivation Models in a Validated Simulator of an Industrial UOP FCC Unit with High-Efficiency Regenerator, Elsevier, 97: 97-108 (2012).

[98] Lee E., Groves F.R., Mathematical Model of the Fluidized Bed Catalytic Cracking Plant, Trans. Soc. Comp. Sim, 2: 219-296 (1985).

[99] Singh R., Gbordzoe E., Modeling FCC Spent Catalyst Regeneration with Computational Fluid Dynamics, Powder Technology, 316: 560-568 (2016).

[100] Wang Y., The Surface Chemistry of Phosphate mineral Flotation with Alcohol Solutions of Octyl Hydroxamic Acid., Ph.D. Thesis, Dissertation. Fuels Engineering Department, University of Utah, UT. (1970).

[101] Jarullah A.T., Awad N.A., Mujtaba I.M., Optimal Design and Operation of an Industrial Fluidized Catalytic Cracking Reactor, Fuel, 206: 657-674 (2017).

[102] Li Y., Chu J., Zhang J., A New Generic Reaction for Modeling Fluid Catalytic Cracking Risers, Chinese Journal of Chemical Engineering, 25(10): 1449-1460 (2017).

[103] John Y.M., Patel R., Mujtaba I.M., Modelling and Simulation of Anindustrial Riser in Fluid Catalytic Cracking Process, Computers & Chemical Engineering, 106: 730-743 (2017)

[104] Hayati R., Abghari S.Z., Sadighi S., Bayat M., Development of a Rule to Maximize the Research Octane Number (RON) of the Isomerization Product from Light Naphtha, Korean Journal of Chemical Engineering, 32(4): 629-635 (2015).

[105] Ying C.M., Joseph B., Performance and Stability Analysis of LP‐MPC and QP‐MPC Cascade Control Systems, AIChE Journal, 45(7): 1521-1534 (1999).

[106] Linga P., Al-Saifi N., Englezos P., Comparison of the Luus− Jaakola optimization and Gauss− Newton Methods for Parameter Estimation in Ordinary Differential Equation Models, Industrial & Engineering Chemistry Research, 45(13): 4716-4725 (2006).

[107] Ardenghi J.I., Maciel M.C., Verdiell A.B., A Trust-Region-Approach for Solving a Parameter Estimation Problem from the Biotechnology Area, Applied Numerical Mathematics, 47(3-4): 281-294 (2003).

[108] Simon L.L., Nagy Z.K., Hungerbuhler K., Model Based Control of a Liquid Swelling Constrained Batch Reactor Subject to Recipe Uncertainties, Chemical Engineering Journal, 153(1): 151-158 (2009).

[109] Mahmoodi S., et al., Nonlinear Model Predictive Control of a pH Neutralization Process Based on Wiener–Laguerre Model, Chemical Engineering Journal, 146(3): 328-337 (2009).

[110] Bandyopadhyay S., et al., A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA, IEEE Transactions on Evolutionary Computation, 12(3): 269-283 (2008).

[111] Kalinli A., Karaboga N., A New Method for Adaptive IIR Filter Design Based on Tabu Search Algorithm, AEU-International Journal of Electronics and Communications, 59(2): 111-117 (2005).

[112] Qin A.K., Huang V.L., Suganthan P.N., Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization, IEEE Transactions on Evolutionary Computation, 13(2): 398-417 (2009).

[113] Módenes A.N., Espinoza-Quiñones, F.R., Trigueros, D.E.G., Lavarda, F.L., Colombo, A., Mora N.D., Kinetic and Equilibrium Adsorption of Cu (II) and Cd (II) Ions on Eichhornia Crassipes in Single and Binary Systems, Chemical Engineering Journal, 168(1): 44-51 (2011).

[114] Jili T., Ning W., Splicing System Based Genetic Algorithms for Developing RBF Networks Models** Supported by the National Natural Science Foundation of China (No.6042002), and the National High Technology Research and Development Program of China (863 Program, 2006AA040308), Chinese Journal of Chemical Engineering, 15(2): 240-246 (2007).

[115] Tao J., Wang N., DNA cComputing Based RNA Genetic Algorithm with Applications in Parameter Estimation of Chemical Engineering Processes, Computers & Chemical Engineering, 31(12): 1602-1618 (2007).

[116] Wang K., Wang N., A Protein Inspired RNA Genetic Algorithm for Parameter Estimation in Hydrocracking of Heavy Oil, Chemical Engineering Journal, 167(1): 228-239 (2011).

[117] Yang S., Yang B., Estimating Kinetics Parameters in Synthesis of Ethyl Tert-Butyl Ether by Using Genetic Algorithm, Journal of Chemical Industry and Engineering-China-, 53(1): 54-59 (2002).

[118]  Yao, R., Yang, B., Cheng, G., Tao, X., Meng, F., Kinetics Research for the Synthesis of Branch Ether Using Genetic-Simulated Annealing Algorithm with Multi-Pattern Evolution, Chemical Engineering Journal, 94(2): 113-119 (2003).

[119] Maeder M., Neuhold Y.-M., Puxty G., Application of a Genetic Algorithm: Near Optimal Estimation of the Rate and Equilibrium Constants of Complex Reaction Mechanisms. Chemometrics and Intelligent Laboratory Systems, 70(2): 193-203 (2004).

[120] Eberhart R., Kennedy J.,  A New Optimizer Using Particle Swarm Theory, in Micro Machine and Human Science,. MHS' 95., Proceedings of the Sixth International Symposium on. IEEE: 39-43 (1995)

[121] Kennedy J., Eberhart R.C., Particle Swarm Optimization, In Proceedings of the 1995 IEEE International Conference on Neural Networks (Perth, Australia), 1942–1948 (1995).

[122] Wang L., Yang B., Wang Z., Lumps and Kinetics for the Secondary Reactions in Catalytically Cracked Gasoline, Chemical Engineering Journal, 109(1): 9-1 (2005).

[123] Kasat R.B., Wang N.H.L., Franses E.I., Multiobjective Optimization of Industrial FCC Units Using Elitist Nondominated Sorting Genetic Algorithm, Industrial & Engineering Chemistry Research, 41(19): 4776-4765 (2002).

[125] Wang L., Yang B., Wang G., Tang H., New FCC Process Minimizes Gasoline Olefin, Increases Propylene, Oil & Gas Journal, 101(6): 52-58 (2003).

[126] Pollard G., Sargent R., Off Line Computation of Optimum Controls for a Plate Distillation Column, Automatica, 6(1): 59-76 (1970).

[127] Sargent R., Sullivan G., The Development of an Efficient Optimal Control Package, Optimization Techniques,    :   158-168 (1978).

[128] Bock H.G., Plitt K.-J., A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems, Proceedings of the IFAC world Congress,  : 1603-1608 (1984).

[129] Biegler L.T., Solution of Dynamic Optimization Problems by Successive Quadratic Programming and Orthogonal Collocation, Computers & Chemical Engineering, 8(4-3): 243-247 (1984).

[130] Almeida Nt E., Secchi A., Dynamic Optimization of a FCC Converter Unit: Numerical Analysis, Brazilian Journal of Chemical Engineering, 28(1): 117-136 (2011).

[131] Rhemann H., Schwars G., Thomas A.B., White D.C., Online FCCU Advanced Control and Optimization, Hydrocarbon Processing, 68(6): 64-71 (1989).

[132] Lid T., Strand S., Real-Time Optimization of a Cat Cracker Unit, Computers & Chemical Engineering, 21: S887-S892 (1997).

[133] Zavala, V.M., “Computational strategies for the optimal operation of large-scale chemical processes”, Carnegie Mellon University (2008).

[134] Zavala V.M., Laird C.D., Biegler L.T., Fastimplementations and Rigorous Models: Can Both be Accommodated in NMPC? International Journal of Robust and Nonlinear Control, 18(8): 800-815 (2008).

[135] Kadam J., Marquardt W., Schlegel M., Backx T., Bosgra O.H., Brouwer P.J., Dünnebier G., Hessem D., Tiagounov A., Wolf S., Towards Integrated Dynamic Real-Time Optimization and Control of Industrial Processes, Proceedings Foundations of Computer-Aided Process Operations (FOCAPO),  : 593-596 (2003).

 [136] Kadam J., Schlegel M., Srinivasan B., Bonvin D., Marquardt W., Dynamic Optimization in the Presence of Uncertainty: From Off-Line Nominal Solution to Measurement-Based Implementation, Journal of Process Control, 17(5): 389-398 (2007).

[137]  Odloak D., Moro L.F.L., Spandri R., Constrained Multivariable Control Of Fluid Catalytic Cracking Converters, A Practical Application, AIChE Spring Meeting, Houston. II.,     : 84-90 (1995).

[138] Chitnis U.K., Corripio A.B., On-Line Optimization of a Model IV Fluid Catalytic Cracking Unit, ISA transactions, 37(7): 215-226 (1998).

[139] Zanin A., de Gouvea M.T., Odloak D., Industrial Implementation of a Real-Time Optimization Strategy for Maximizing Production of LPG in a FCC Unit, Computers & Chemical Engineering, 24(2): 525-531 (2000).

[140] Ali E.E., Elnashaie S.S., Nonlinear Model Predictive Control of Industrial Type IV Fluid Catalytic Cracking (FCC) Units for Maximum Gasoline Yield, Industrial & Engineering Chemistry Research, 36(2): 389-398 (1997).

[141] Zanin A.C., T de Gouvea M., Odloak D., Comparing the Performance of Different Real-Time Optimization Strategies for the FCC Catalytic Converter, In ADCHEM.,      : 14-16 (2000).

[142] Neto E.A., Secchi A.R., Dynamic Real-Time Optimization of a FCC Converter Unit, IFAC Proceedings Volumes, 39(2): 1055-1061 (2006).

[143] Miletic I., Marlin T., Results analysis for real-time optimization (RTO): Deciding when to change the plant operation, Computers & Chemical Engineering, 20: S1077-1082 (1996).

[144] Miletic I., Marlin T., On-Line Statistical Results Analysis in Real-Time Operations Optimization, Industrial & Engineering Chemistry Research, 37(9): 3670-3684 (1998).

[145] Han I.-S., Riggs J.B., Chung C.-B., Modeling and Optimization of a Fluidized Catalytic Cracking Process under Full and Partial Combustion Mode,. Chemical Engineering and Processing: Process Intensification, 43(8): 1063-1084 (2004).

[146] Souza J.A., Vargas, J.V.C., Meien, O.F., Martignoni, W.P., Ordonez, J.C., The Inverse Methodology of Parameter Estimation for Model Adjustment, Design, Simulation, Control and Optimization of Fluid Catalytic Cracking (FCC) Risers, Journal of Chemical Technology and Biotechnology, 84(3): 343-355 (2009).

[147] Souza J.A., Vargas J.V.C., Ordonez J.C., Martignoni W.P., Meien O.F.,Thermodynamic Optimization of Fluidized Catalytic Cracking (FCC) Units, International Journal of Heat and Mass Transfer, 54(5): 1187-1197 (2011).

 [148] Song C.-M., Yan Z., Tu Y., Energy and Exergy Analysis of FCC Unit, in Abstr. Pap. Am. Chem. Soc., 217: 140-144 (1999).

[149] Păun G., Membrane Computing, An Introduction Springer-Verlag, Berlin, p. .270-287 (2009).

[150] Păun G., Pérez-Jiménez M.J., Riscos-Nunez A., Tissue P Systems with Cell Division, International Journal of Computers Communications & Control, 3(3): 295-303 (2008).

[151] Huang L., Wang N., An Optimization Algorithm Inspired by Membrane Computing, Advances in Natural Computation,    :49-52 (2006).

[152] Zhang G.-X., Gheorghe M., Wu C.-Z., A Quantum-Inspired Evolutionary Algorithm Based onP Systems for Knapsack Problem, Fundamenta Informaticae, 87(1): 93-116 (2008).

[153] Yang S., Wang N., AP Systems Based Hybrid Optimization Algorithm for Parameter Estimation of FCCU Reactor–Regenerator Model, Chemical Engineering Journal, 211: 508-518 (2012).

[154] Tang G., Silaen A.K.., Wu B., Zhou C.Q., Dean D.A., Wilson J., Meng Q., Khanna S., Numerical Simulation Andoptimization of an Industrial Fluid Catalytic Cracking Regenerator, Applied Thermal Engineering, 112: 750-760 (2017).

[155] Ng G., Application of Neural Networks to Adaptive Control of Nonlinear Systems, Research Studies Press. LTD. & John Wiley & Son Inc., ISBN., 471 (97263): 1931-1933 (1997).

[156] Narendra K.S., Parthasarathy K., Identification and Control of Dynamical Systems Using Neural Networks, IEEE Transactions on Neural Networks, 1(1): 4-27 (1990).

[157] Hussain M.A., Review of the Applications of Neural Networks in Chemical Process Control—Simulation and Online Implementation, Artificial Intelligence in Engineering, 13(1): 55-68 (1999).

[158] Norgaard M., Ravin O., Poulsen N.K., Hansen L. K., Neural Networks for Modelling an Control of Dynamic Systems, Springer Verlag, (2000).

[159] Piche S., Sayyar-Rodsari B., Johnson D., Gerules M., Nonlinear Model Predictive Control Using Neural Networks, IEEE Control Systems, 20(3): 53-62 (2000).

[160] Zhan J., Ishida M., The Multi-Step Predictive Control of Nonlinear SISO Processes with a Neural Model Predictive Control (NMPC) Method, Computers & Chemical Engineering, 21(2): 201-210 (1997).

[161] Alaradi A., Rohani S., Identification and Control of a Riser-Type FCC Unit Using Neural Networks, Computers & Chemical Engineering, 26(3): 401-421 (2002).

[162] Silver E.A., An Overview of Heuristic Solution Methods, Journal of the Operational Research Society, 55(9): 936-956 (2004).

[163] Moro L.F.L., Odloak D., Constrained Multivariable Control of Fluid Catalytic Cracking Converters, Journal of Process Control, 5(1): 29-39 (1995).