بررسی تغییر رفتار فازی آب سازندی در اثر ترکیب با آب دریا در فرایند سیلاب زنی به وسیله معادله پی سی سفت الکترولیت

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

آب سازندی نمونه مهمی از محلول های الکترولیتی می باشد. میزان نمک های معدنی حل شده در آب سازندی، بر ویژگی­ های حجمی تعادلی آب سازندی تأثیرگذار است. در فرایند سیلاب­زنی، آب دریا یعنی محلول الکترولیتی با غلظت­ های بسیار پایین با آب سازند، محلول الکترولیتی با غلطت نمک حل شده به نسبت بالا، ترکیب می شود و بنابراین ویژگی­ های حجمی و تعادلی آن تغییر می کند. تخمین دقیق ویژگی­ های آب سازندی، نقش مهمی در تخمین فرایند سیلاب زنی دارد در این پژوهش، معادله حالت الکترولیت بر پایه معادله حالت پی سی سفت، همراه با نظریه دبای هوکل ، برای مدل­ سازی چگالی و تعادل بخارـ مایع محلول­ های الکترولیتی به کار گرفته شد. در این معادله حالت یون­ ها مستقل از نمکی که تشکیل ­دهنده­ ی آن هستند در نظر گرفته می­ شوند و هر یون به دو پارامتر قطر یونی و انرژی پراکندگی افزون بر پارامترهای معمول سفت، نیاز دارد. در این پژوهش، برای صحت سنجی پیاده سازی این معادله، فشار بخار و چگالی محلول­ های سدیم­ کلرید، پتاسیم­ کلرید، سدیم ­برمید، سدیم ­سولفات و لیتیم­ سولفات و همچنین فشار بخار مخلوط سدیم­ کلرید و پتاسیم ­برمید و مخلوط سدیم­ برمید و پتاسیم­ کلرید پیش­ بینی و با داده­ های تجربی مقایسه شد. سرانجام با استفاده از برنامه صحت سنجی شده، تغییر رفتار فازی آب سازند در اثر ترکیب با آب تزریقی (برای دو مورد مطالعاتی گوناگون) بررسی ­شد و فشار بخار و حجم مولی ترکیب آن­ها پیش بینی شد و با استفاده از این روش مدل سازی تغییر ویژگی­ های حجمی تعادلی آب سازندی در اثر ترکیب با آب دریا به نسبت­ های گوناگون بررسی می شود.

کلیدواژه‌ها

موضوعات


[1] Nergaard M., Grimholt C., "An Introduction to Scaling Causes, Problems and Solutions". Term Paper for the Course TPG, (2010)
[2] Yousef, A.A., Al-Saleh, S.H., Al-Kaabi, A., Al-Jawfi, M.S. "Laboratory Investigation of the Impact of Injection-Water Salinity and Ionic Content on Oil Recovery from Carbonate Reservoirs". SPE Reservoir Evaluation & Engineering, 14(05): 578-593 (2011)
[3] Chapman, W.G., Gubbins, K.E. Jackson, G., Radosz, M.,  New Reference Equation of State for Associating Liquids. Industrial & Engineering Chemistry Research, 29(8): 1709-1721 (1990)
[4] Wertheim M., Fluids with Highly Directional Attractive Forces. I. Statistical Thermodynamics. Journal of Statistical Physics, 35(1-2): 19-34 (1984)
[5] Wertheim M., Fluids with Highly Directional Attractive Forces. II. Thermodynamic Perturbation Theory and Integral Equations. Journal of Statistical Physics, 35(1-2): 35-47 (1984)
[6] Wertheim M., Fluids with Highly Directional Attractive Forces. III. Multiple Attraction Sites. Journal of Statistical Physics, 42(3-4): 459-476 (1986)
[7] Wertheim M., Fluids with Highly Directional Attractive Forces. IV. Equilibrium Polymerization. Journal of Statistical Physics, 42(3-4): 477-492 (1986)
[8] Liu Z., Wang W., Li Y., An Equation of State for Electrolyte Solutions by a Combination of Low-Density Expansion of Non-Primitive Mean Spherical Approximation and Statistical Associating Fluid Theory. Fluid Phase Equilibria, 227(2): 147-156 (2005)
[9] Galindo, A., Gil-Villegas, A., Jackson, G., Burgess, A.N. SAFT-VRE: Phase Behavior of Electrolyte Solutions with the Statistical Associating Fluid Theory for Potentials of Variable Range. The Journal of Physical Chemistry B., 103(46): 10272-10281 (1999)
[10] Gil-Villegas A., Galindo A., Jackson G., A Statistical Associating Fluid Theory for Electrolyte Solutions (SAFT-VRE). Molecular Physics, 99(6): 531-546 (2001)
[11] Behzadi, B., Patel, B. Galindo, A., Ghotbi, C.  Modeling Electrolyte Solutions with the SAFT-VR Equation Using Yukawa Potentials and the Mean-Spherical Approximation. Fluid Phase Equilibria, 236(1-2): 241-255 (2005)
[12] Patel, B.H., Paricaud, P., Galindo, A, Maitland, G.C. Prediction of the Salting-Out Effect of Strong Electrolytes on Water+Alkane Solutions. Industrial & Engineering Chemistry Research, 42(16): 3809-3823 (2003)
[13] Schreckenberg, J.M., Dufal, S., Haslam, A.J., Adjiman, C.S.,  Jackson, G., Galindo, A.,, Modelling of the Thermodynamic and Solvation Properties of Electrolyte Solutions with the Statistical Associating Fluid Theory for Potentials of Variable Range. Molecular Physics, 112(17): 2339-2364 (2014)
[14] Ji, X., Tan, S.P., Adidharma, H. Radosz, M., Statistical Associating Fluid Theory Coupled with Restricted Primitive Model to Represent Aqueous Strong Electrolytes: Multiple-Salt Solutions. Industrial & Engineering Chemistry Research, 44(19): 7584-7590 (2005)
[15] Tan S.P., Adidharma H., Radosz M., Statistical Associating Fluid Theory Coupled with Restricted Primitive Model to Represent Aqueous Strong Electrolytes. Industrial & Engineering Chemistry Research, 44(12): 4442-4452 (2005)
[16] Tan, S.P., Ji, X., Adidharma, H., Radosz, M. Statistical Associating Fluid Theory Coupled with Restrictive Primitive Model Extended to Bivalent Ions. SAFT2: 1. Single Salt+ Water Solutions. The Journal of Physical Chemistry B., 110(33): 16694-16699 (2006)
[17] Ji, X., Tan, S.P., Adidharma, H. Radosz, M., Statistical Associating Fluid Theory Coupled with Restrictive Primitive Model Extended to Bivalent Ions. SAFT2: 2. Brine/Seawater Properties Predicted. The Journal of Physical Chemistry B, 110(33): 16700-16706 (2006)
[18] Ji X. H. Adidharma, Ion-Based Statistical Associating Fluid Theory (SAFT2) to Represent Aqueous Single-Salt Solutions at Temperatures and Pressures up to 473.15 K and 1000 Bar. Industrial & Engineering Chemistry Research, 46(13): 4667-4677 (2007)
[19] Schlaikjer A., Thomsen K., Kontogeorgis G.M., Simultaneous Description of Activity Coefficients and Solubility with eCPA. Industrial & Engineering Chemistry Research, 56(4): 1074-1089 (2017)
[20] Schlaikjer A., Thomsen K., Kontogeorgis G.M., eCPA: An Ion-Specific Approach to Parametrization. Fluid Phase Equilibria, 470: 176-187 (2018)
[21] Wu J., Prausnitz J.M., Phase Equilibria for Systems Containing Hydrocarbons, Water, and Salt: An Extended Peng− Robinson Equation of State. Industrial & Engineering Chemistry Research, 37(5): 1634-1643 (1998)
[22] Cameretti L.F., Sadowski G., Mollerup J.M., Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory. Industrial & Engineering Chemistry Research, 44(9): 3355-3362 (2005)
[23] Lee B.-S. Kim K.-C., Modeling of Aqueous Electrolyte Solutions Based on Perturbed-Chain Statistical Associating Fluid Theory Incorporated with Primitive Mean Spherical Approximation. Korean Journal of Chemical Engineering, 26(6): 1733-1747 (2009)
[24] Held C., Cameretti L.F., Sadowski G., Modeling Aqueous Electrolyte Solutions: Part 1. Fully Dissociated Electrolytes. Fluid Phase Equilibria, 270(1-2): 87-96 (2008)
[25] Held C. Sadowski G., Modeling Aqueous Electrolyte Solutions. Part 2. Weak Electrolytes. Fluid Phase Equilibria, 279(2): 141-148 (2009)
[26] Held, Christoph, Prinz, Axel, Wallmeyer, Viktoria, Sadowski, Gabriele Measuring and Modeling Alcohol/Salt Systems. Chemical Engineering Science, 68(1): 328-339 (2012)
[27] Held, C., Reschke, T., Mohammad, S., Luza, A., Sadowski, G., ePC-SAFT Revised. Chemical Engineering Research and Design, 92(12): 2884-2897 (2014)
[28] Reschke T., Brandenbusch C., Sadowski G., Modeling Aqueous Two-Phase Systems: I. Polyethylene Glycol and Inorganic Salts as ATPS Former. Fluid Phase Equilibria, 368: 91-103 (2014)
[29] Reschke T., Brandenbusch C., Sadowski G., Modeling Aqueous Two-Phase Systems: II. Inorganic Salts and Polyether Homo-and Copolymers as ATPS Former. Fluid Phase Equilibria, 375: 306-315 (2014)
[30] Reschke T., Brandenbusch C., Sadowski G., Modeling Aqueous Two-Phase Systems: III. Polymers and Organic Salts as ATPS Former. Fluid Phase Equilibria, 387: 178-189 (2015)
[31] Sadeghi, Masoud, Held, Christoph, Samieenasab, Ahmadreza, Ghotbi, Cyrus, Abdekhodaie, Mohammad Jafar, Taghikhani, Vahid, Sadowski, Gabriele, Thermodynamic Properties of Aqueous Salt Containing Urea Solutions. Fluid Phase Equilibria. 325: 71-79 (2012)
[32] Shadloo A., Abolala M., Peyvandi K., Application of Ion-Based ePC-SAFT in Prediction of Density of Aqueous Electrolyte Solutions. Journal of Molecular Liquids, 221: 904-913 (2016)
[33] Shadloo A. Peyvandi K., The Implementation of Ion-Based ePC-SAFT EOS for Calculation of the Mean Activity Coefficient of Single and Mixed Electrolyte Solutions. Fluid Phase Equilibria, 433: 226-242 (2017)
[34] Gross J., Sadowski G., Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Industrial & Engineering Chemistry Research, 40(4): 1244-1260 (2001)
[35] Gross J., Sadowski G., Application of the Perturbed-Chain SAFT Equation of State to Associating Systems. Industrial & Engineering Chemistry Research, 41(22): 5510-5515 (2002)
[36] Kontogeorgis G.M., Folas G.K., "Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories". John Wiley & Sons Inc. (2009)
[37] Hsu H.-l., Wu Y.-C., Lee L.-S., Vapor Pressures of Aqueous Solutions with Mixed Salts of NaCl+ KBr and NaBr+ KCl. Journal of Chemical & Engineering Data, 48(3): 514-518 (2003)
[38] Moghadasi, J., Jamialahmadi, M., Müller-Steinhagen, H., and Sharif, A., "Scale Formation in Oil Reservoir and Production Equipment During Water Injection (Kinetics of CaSO4 and CaCO3 Crystal Growth and Effect on Formation Damage)". SPE European Formation Damage Conference. Society of Petroleum Engineers (2003)
[39] Taheri, A., Zahedzadeh, M., Masoudi, R., Alikhani, F., Roayaei, E., and Ghanavati, M., "Evaluation of Reservoir Performance Under Water Injection Considering the Effect of Inorganic Scale Deposition in an Iranian Carbonate Oil Reservoir", 8th European Formation Damage Conference. Society of Petroleum Engineers (2009)
[40] Moghadasi, J., Jamialahmadi, M., Müller-Steinhagen, H., Sharif, A. Ghalambor, A., Izadpanah, M. and Motaie., E. ,"Scale Formation in Iranian oil Reservoir and Production Equipment During Water Injection. In International Symposium on Oilfield Scale". Society of Petroleum Engineers (2003)