مطالعات هم دماهای تعادلی جذب رنگ متیلن بلو توسط MIL-101 (Cr) اصلاح شده با نانوذره های روی اکسید

نوع مقاله : علمی-پژوهشی

نویسندگان

1 گروه شیمی، دانشگاه آزاد اسلامی، واحد اراک، اراک، ایران

2 گروه شیمی، دانشگاه آزاد اسلامی، واحد اردبیل، اردبیل، ایران

چکیده

آلاینده ­های نوظهور ناشی از آب یکی از بزرگترین نگرانی­ های جامعه مدرن ما هستند و جذب سطحی به عنوان یکی از امیدوار کننده‌ترین روش‌ها برای حذف آنها مشخص شده‌ است. تهیه جاذب کارا نقش حیاتی در روش جذب دارد.­ در این مطالعه، جاذب جدیدی از چارچوب­ آلی­ فلزی MIL – 101(Cr) به روش هیدروترمال سنتز شد، سپس سطح آن توسط نانو ذره­ های روی اکسید اصلاح شد تا جاذب جدید MIL – 101(Cr)@ZnO  بدست آید. جاذب توسط آنالیزهای ، ­،  EDX وBET مشخصه ­یابی شد. کارایی جاذب در جذب متیلن بلو توسط مطالعات هم ­دماهای تعادلی جذب در شرایط بهینه ­ی آزمایشگاهی 9­pH=، مقدار جاذب 0035/0 گرم، حجم محلول رنگ 50 میلی لیتر، زمان تماس 60 دقیقه، در دماهای گوناگون(60،­40­، 35 درجه سلسیوس) و در غلظت های گوناگون از رنگ متیلن بلو (­11،­10، 9، 8، 6 میلی گرم بر لیتر) مورد بررسی قرار گرفت. داده ­های جذب تعادلی با مدل­ های هم ­دما­های تعادلی دو پارامتری لانگمویر، فروندلیچ، تمکین، الوویچ و دوبینین - رادوشکویچ (DR) برازش داده شدند. نتیجه­ های بدست آمده نشان داد که ترتیب تبعیت جذب رنگ هم­ دماهای مورد بررسی به صورت ­دوبینین رادوشکویچ > تمکین > فروندلیچ > الوویچ > لانگمویر می­ باشد. ­­این ترتیب نشان داد که جذب متیلن بلو به صورت چند لایه ­ای بیشتر­از تک لایه­ ای صورت­ می­ گیرد. ­هم ­دمای تعادلی ­دوبینین­ رادوشکویچ با بیشترین ضریب همبستگی (9767/0=­R2­)­ و پایین بودن متوسط انرژی آزاد(975/0= ژول بر مول) نشان داد جذب فیزیکی، فرایند غالب جذب است.  حداکثر ظرفیت جذب هم ­دمای تعادلی لانگمویر در دمای 313 کلوین با مقدار 7143/258=­qmax میلی گرم بر گرم تعیین شد، فاکتور جداسازی در همان دما(­4364/0=) نیز نشان دهنده جذب مطلوب است.در هم ­دمای تعادلی فروندلیچ، شدت جذب و ضریب همبستگی به ترتیب 3825/1= n­و­879/0= R2­ بدست آمد. گرمای جذب هم­ دمای تعادلی تمکین  192/57= ژول بر مول و بیشترین ظرفیت جذب­ از هم ­دمای تعادلی الوویچ 3333/333= qmax میلی گرم بر گرم بدست آمد. علاوه بر این، مقدار مقادیر ترمودینامیکی نشان داد که فرآیند جذب آلاینده یک فرآیند خود به خود و گرماگیر است. تمامی شواهد مطالعه حاضر دال برآن است که جذب متیلن بلو بر روی جاذب مذکور از یک فرآیند فیزیکی پیروی می کند.

کلیدواژه‌ها

موضوعات


[2] Moosavi S., Lai C.W., Gan S., Zamiri G., Akbarzadeh Pivehzhani O., Johan M.R., Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from WastewaterACS Omega, 5(33): 20684–20697 (2020).
[3] چگنی، مهدیه؛ یوسفوند، حدیث، بررسی تخریب متیلن بلو از محلول­های آبی با استفاده از نانوکامپوزیت پرلیت-کبالت اکسید-گرافن اکسید کاهش یافته، نشریه شیمی و مهندسی شیمی ایران، 40(4): 43 تا 54 (1400).
[4] Kitagawa S., Kitaura R., Noro S., Functional Porous Coordination Polymers, Chem. Int. Ed., 43: 2334-2375 (2004).
[5] Long R., Long O.M., The pervasive Chemistry of Metal–Organic Frameworks, Chem. Soc. Rev., 38: 1213-1214 (2009).
[6] Rosi N.L., Eckert J., Eddaoudi M., Vodak D.T., Kim J., O’Keeffe M., Yaghi O.M., Hydrogen Storage in Microporous Metalorganic Frameworks, Science, 300: 1127-1129 (2003).
[7] Wu H., Zhou W., Yildirim T., High-Capacity Methane Storage in Metal−Organic Frameworks M2(dhtp): The Important Role of Open Metal Sites, J. Am. Chem. Soc., 131: 4995-5000 (2009).
[8] Zacher D., Shekhah O., Woll C., Thin Films of Metal–Organic Frameworks, Chem. Soc. Rev., 38: 1418-1429 (2009).
[10] Jiang J.M., Xu Q., Porous Metal–Organic Frameworks as Platforms for Functional Applications, Chem. Commun., 47: 3351-3370 (2011).
[11] Sakata Y., Furukawa S., Kondo M.,  Hirai K., Horike N., Takashima Y., Uehara H., Louvain N., Meilikhov M., Tsuruoka T., Tsuruoka, Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing, Science, 339: 193-196 (2013).
[12] Furukawa H., Ko N., Go B.Y., Aratani N., Choi S.B., Choi E., Yazaydin A.O., Snurr R.Q., O’Keeffe M.,  Kim J., Ultrahigh Porosity in Metal-Organic Frameworks, Science, 329: 424-428 (2010).
[13] Farha O.K., Yazaydin A.O., Eryazici I., Malliakas C.D., Hauser B.G., Kanatzidis M.G., Nguyen S.T., Snurr R.Q., Hupp J.T., De Novo Synthesis of a Metal-Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities, Nat. Chem., 2: 944-948 (2010).
[14] Wang Z., Zhang S., Chen Y., Zhang Z., Ma S., Covalent Organic Frameworks for Separation Applications, Chem. Soc. Rev., 49: 708-735 (2020).
[15] Rogacka J., Seremak A., Luna-Triguero A., Formalik F., Matito-Martos I., Firlej L., Calero S., Kuchta B., High-Throughput Screening of Metal–Organic Frameworks for CO2 and CH4 Separation in the Presence of WaterChem. Eng. J., 403: 126392 (2021).
[16] Lin Y., Huang Y., Chen X., Recent Advances in Metal-Organic Frameworks for Biomacromolecule Sensing, Chemosensors, 10: 412 (2022).
[17] Lai C., Wang Z., Qin L., Fu Y., et al., Metal-Organic Frameworks as Burgeoning Materials for the Capture and Sensing of Indoor VOCs and Radon GasesCoord. Chem. Rev., 427: 213565 (2021).
[18] Yamada, T., Otsubo, K., Makiura  R., Kitagawa  H, Designer Coordination Polymers: Dimensional Crossover Architectures and Proton Conduction, Chem. Soc. Rev., 42: 6655-6669 (2013).
[19] Sadakiyo  M., Okawa  H., Shigematsu  A., Ohba  M., Yamada  T., Kitagawa  H., Promotion of Low-Humidity Proton Conduction by Controlling Hydrophilicity in Layered Metal-Organic Frameworks,  J. Am. Chem. Soc., 134: 5472-5475 (2012).
[20] Horcajada P., Gref  R., Baati T., Allan P.K., Maurin G., Couvreur  P., Ferey  G., Morris  R.E., Serre C., Metal-Organic Frameworks in Biomedicine, Chem. Rev., 112: 1232-1268 (2012).
[21] Taylor-Pashow  K.M., Della Rocca  J., Xie  Z., Tran  S., Lin W., Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metalorganic Frameworks for Imaging and Drug DeliveryJ. Am. Chem. Soc., 131: 14261-14263 (2009).
[22] Celeste A., Paolone A., Itié J.P.,  Borondics F., Joseph B., Grad O., Blanita G., The Mesoporous Metal–Organic Framework MIL-101 at High Pressure, J. Am. Chem. Soc., 142: 15012-15019 (2020).
[23] Lee Y.R., Kim J., Ahn, W.S., Synthesis of Metal-Organic Frameworks: A Mini ReviewKorean J. Chem. Eng.30: 1667–1680 (2013).
[24] Corma A., García H., Xamena F.X., Engineering Metal Organic Frameworks for Heterogeneous Catalysis, Chem. Rev., 110(8): 4606–4655 (2010).
[25] Kaur H., Devi N., Siwal S.S., Alsanie W.F., Thakur M.K., Thakur V.K., Metal–Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants, ACS Omega, 8(10): 9004–9030 (2023).
[26] Hong D.-Y., Hwang Y.K., Serre C., Férey G., Chang J.-S., Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis, Adv. Funct. Mater., 19:1537-1552 (2009).
[27] Zou  M., Dong  M., Zhao  T., Advances in Metal-Organic Frameworks MIL-101(Cr)Int. J. Mol. Sci., 23:9396 (2022). 
[29] Arslan I., Balcio glu I. A., Bahnemann D. W., Advanced Chemical Oxidation of Reactive Dyes in Simulated Dyehouse Effluents by Ferrioxalate-Fenton/UV-A and TiO2/UV-A Processes, Dyes Pigments, 47: 207-218 (2000).
[30] Namasivayam C., Maniasamy N., Gayatri  K., Rani M., Ranganathan K., Removal of Dyes from Aqueous Solutions by Cellulosic Waste Orange Peel, Bioresour. Technol., 57: 37-43 (1997).
[31] Kusuma H.S., Aigbe U.O.,  Ukhurebor K.E., Onyancha R.B.,Okundaye B., Simbi I., Ama O.M., Darmokoesoemo H., Widyaningrum B.A., Osibote O.A., Balogun V.A., Biosorption of Methylene Blue Using Clove Leaves Waste Modified with Sodium Hydroxide, Results in Chemistry, 5: 100778 (2023).
[34] Sadiq  H., Sher  F., Sehar   S., Lima  E.C.,  Zhang   S.,  Iqbal  H.M.N., Zafar  F., Nuhanovićj  M., Green synthesis of ZnO nanoparticles from Syzygium Cumini Leaves Extract with Robust Photocatalysis Applications, J. Mol. Liquids., 335: 116567 (2021).
[35] Narath  S.,  Koroth S.K., Shankar S.S., George  B., Mutta  V.,  Waclawek  S.,  Cernik   M.,  Padil  V.V.T., Varma  R.S., Cinnamomum Tamala Leaf Extract Stabilized Zinc Oxide Nanoparticles, A Promising Photocatalyst for Methylene Blue Degradation, Nanomaterials, 11: 1558 (2021).
[37] Muhammad W., Ullah N., Haroon M., Abbasi BH., Optical, Morphological and Biological Analysis of Zinc Oxide Nanoparticles (ZnO NPs) using Papaver Somniferum L, RSC Adv., 9: 29541-29548 (2019).
[40] Jawad A.H., Solehah Ahmad Norrahma S., Hamee, B.H., Ismail K., Chitosan-Glyoxal Film as a Superior Adsorbent for Two Structurally Different Reactive and Acid Dyes: Adsorption and Mechanism Study, Int. J. Biol., 135: 569-581 (2019).
[41] Jawad A.H., Sabar S., Azlan Mohd Ishak M., Wilson L.D., Solehah Ahmad Norrahma S., Talari M.K., Farhan A.M., Microwave-Assisted Preparation of Mesoporous Activated Carbon from Coconut (Cocos Nucifera) Leaf by H3PO4-Activation for Methylene Blue Adsorption, Chem. Eng. Commun., 204(10): 1563-5201 (2017).
[42]  Hoon Seo K., Markus J., Soshnikova V., Oh K.H.,  Anandapadmanaban G., Elizabeth Jimenez Perez  Z., Mathiyalagan R., Kim Y.J., Yang D.C., Facile and Green Synthesis of Zinc Oxide Particles by Stevia Rebaudiana and its in Vitro Photocatalytic Activity. Inorg. Nano-Met. Chem., 49: 1-6(2019).
[43] زمان، لادن؛ یوسفی، رامین؛ نیایی فر، محمد؛ حذف رنگ متیلن بلو به کمک نانو ذرات اکسید روی آلاییده شده با سرب، کنفرانس آب، پساب و پسماند، ایران، 6: (1394).
[44] خان محمدی، مرتضی؛ رحمانی، فرهاد؛ رهبر شهروزی، جواد؛ تثبیت نانوذره­ های کاتالیستی نوری TiO2 بر روی جاذب متخلخل مزوروزنه 41-MCM به منظور پاالیش آب آلوده به آنتی بیوتیک تتراسایکلین، نشریه شیمی و مهندسی شیمی ایران، 41(1): 219 تا 233 (1401).
 [45] غیاث آبادی فراهانی، معصومه؛  خانلرخانی، علی؛  کاظم زاد، محمود؛  آقابراری، بهزاد، حذف جذبی BTEX از محلول آبی توسط چارچوب آلی فلزیMOF-199 ، نشریه شیمی و مهندسی شیمی ایران، 40(4): 175 تا 176 (1400).
[47] اسماعیل زاده، علیرضا ؛ حشمت پور، فلورا؛ عبدی خانی، مرضیه السادات، بررسی کارایی نانو کامپوزیت Sr-Ce-ZnO/Hap در تخریب کاتالیستی نوری آلاینده رودامینB در حضور نور مرئی، نشریه شیمی و مهندسی شیمی ایران، 41(3): 85 تا 96 (1401).
[48] گلبابایی، فریده؛ قهری، اصغر؛ صعودی، محمدرضا؛ رحیمی فروشانی، عباس؛ تیرگر، آرام، مطالعه‌های تعادل و سینتیک جذب زیستی کروم شش ظرفیتی از محلول‌های آبی با استفاده از دانه‌های پلیمر زانتان B82 نشریه شیمی و مهندسی شیمی ایران، 30(2): 11 تا 24 (1390).
[50] Ragadhita R., Nandiyanto A.B.D., How to Calculate Adsorption Isotherms of Particles Using Two-Parameter Monolayer Adsorption Models and Equations, Indones. J. Sci. Technol., 6: 205-234 (2021).
[51] Fu J., Chen Z., Wang M., Zhang J., Han R., Xu Q., Adsorption ( Poly Pamine Micropheres): Kinetics, Isoterm, Thermodynamics and Mechanism Analysis, Chem. Eng. J., 259: 53-61 (2015).
[52] Karimi M.A., Masrouri H., Mirbagheri  M.A., Andishgar  S., Pourshamsi T., Synthesis of a New Magnetic Metal–Organic Framework Nanocomposite and its Application in Methylene Blue Removal from Aqueous Solution, J. Chin. Chem. Soc., 65: 1229-1238 (2018).
[53] Tehrani M.S., Zare-Dorabei R., Competitive Removal of Hazardous Dyes from Aqueous Solution by MIL-68(Al): Derivative Spectrophotometric Method and Response Surface Methodology Approach. Spectrochim. Acta Part A Mol, Biomol. Spectrosc., 160: 8-18 (2016).
[55] Molavi  H., Hakimian  A., Shojaei  A., Raeiszadeh  M., Selective Dye Adsorption by Highly Water Stable Metal-Organic Framework: Long Term Stability Analysis in Aqueous Media, Appl. Surf. Sci., 445: 424-436 (2018).
[56] Beydaghdari  M., Hooriabad Saboor  F., Babapoor  A., Karve, V.V., Asgari  M., Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment, Energies, 15: 2023 (2022).
[57] Eltaweila  A.S., El-Monaema E.M.A., Omer A.M., Khalifaa R. E., El-Latifc M.M.A., El-Subruiti G.M., Efficient Removal of Toxic Methylene Blue (MB) Dye from Aqueous Solution Using a Metal-Organic Framework (MOF) MIL-101(Fe): Isotherms, Kinetics, and Thermodynamic Studies, Desalination Water Treat, 189: 395–407 (2020).
[58]  Xue Y., Xiang P., Wang H., Jiang Y., Long Y., Lian H., Shi W., Mechanistic Insights into Selective Adsorption and Separation of Multi-Component Anionic Dyes Using Magnetic Zeolite Imidazolate Framework-67 Composites, J. Mol. Liq. 296: 111990  (2019).
[59] Zhang  G.,  Wo  R.,  Sun Z.,  Hao  G.,  Liu  G.,  Zhang Y.,  Guo  H.,  Jiang W., Effective Magnetic MOFs Adsorbent for the Removal of Bisphenol A, Tetracycline, Congo Red and Methylene Blue Pollutions, Nanomaterials, 11(8): 1917 (2021).
[60] Elsherbiny A.S., Rady A., Abdelhameed R.M., Gemeay A.H., Efficiency and Selectivity of Cost-Effective Zn-MOF for Dye Removal, Kinetic and Thermodynamic Approach, Environ. Sci. Pollut. Res., (2023). 
[61] Hajnaja M., Khorshidi A., Gilani A.G., Verpoort F., Removal of Methylene Blue from Aqueous Solution by Polydopamine@Zeolitic Imidazolate-67, Res. Sq, (2021).
[62] Soni S., Bajpai P.K., Mittal J., Arora C., Utilisation of Cobalt Doped Iron Based MOF for Enhanced Removal and Recovery of Methylene Blue Dye from Waste Water, J. Mol. Liq., 314: 113642–113654 (2020).
[63] Ahmadijokani F., Molavi H., Bahi A., Wuttke S., Kamkar M., Rojas O.J.,Ko F., Arjmand.M., Electrospun Nanofbers of Chitosan/Polyvinyl Alcohol/UiO-66/ Nanodiamond: Versatile Adsorbents for Wastewater Remediation and Organic Dye Removal, Chem. Eng. J., 457(1): 141176 (2023).
[64]  وثوقی، مهدی؛ عین اله زاده، نگار، بررسی کارایی فرایند جذب Zeolite@ZnO در حذف رنگ متیلن بلو از محلول‌های آبی، طلوع بهداشت، ۲۰(۴): ۷۹ تا 92 (1400).
[65] Zhang H., Shi X., Li J., Kumar P., Liu B., Selective dye Adsorption by Zeolitic Imidazolate Framework-8loadedUiO-66-NH2, Nanomaterials, 9: 1283 (2019).