بررسی تجربی تأثیر میدان مغناطیسی بر عدد ناسلت فروسیال در کانالی مربعی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

هدف از مطالعه حاضر بررسی تجربی انتقال گرما در فروسیال Fe3O4/آب در یک کانال با سطح مقطع مربعی با اندازه‌های 8/0 متر× 01/0 متر ×01/0 متر  تحت تأثیر انرژی گرمایی کل یکنواخت در جریان آرام در حضور میدان مغناطیسی بیرونی محلی می‌باشد. بررسی عدد ناسلت محلی فروسیال با کسرهای گوناگون حجمی (5/0% و 1%) و در حضور میدان مغناطیسی و تحت تأثیر شارهای گوناگون گرمایی متفاوت (30، 7/86، 95/229، 65/433، 51/573 وات) انجام می‌شود. گرما به‌طور کاملا یکنواخت و بر همه سطوح کانال اعمال می‌شود. انرژی گرمایی کل، میدان مغناطیسی محلی و درصد حجمی فروذره‌ها بر عدد ناسلت به‌طور هم‌زمان و جداگانه بررسی می‌شود. در اعمال میدان مغناطیسی محلی بیرونی بر جریان فروسیال تا 33/1 برابر افزایش در عدد ناسلت و در استفاده از فروسیال تحت تأثیر میدان مغناطیسی محلی بیرونی نسبت به آب خالص تا 36/1 برابر افزایش مشاهده می‌شود. این مقدارهای بیشینه در فروسیال با درصد حجمی 1% و در کم‌ترین انرژی گرمایی کل اعمالی یعنی 30 وات اتفاق می‌افتد. این نتیجه‌ها نشان می‌دهد که استفاده از فرو ذره‌های Fe3O4 و میدان مغناطیسی اعمالی بیرونی به‌طور هم‌زمان تأثیر هم افزایی بر افزایش عدد ناسلت دارند.

کلیدواژه‌ها

موضوعات


[1] Ghadimi A., Saidur R., Metselaar H., A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, International journal of heat and mass transfer, 54(17-18): 4051-4068 (2011).
[2] Haddad Z., Abid C., Oztop H.F., Mataoui A., A Review on How the Researchers Prepare Their Nanofluids, International Journal of Thermal Sciences, 76: 168-189 (2014).
[3] Li Y., Tung S., Schneider E., Xi S., A Review on Development of Nanofluid Preparation and Characterization, Powder technology, 196(2): 89-101 (2009).
[4] Yu W., Xie H., A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, Journal of nanomaterials, 2012: 1-17 (2012).
[5] Özerinç S., Kakaç S., Yazıcıoğlu A.G., Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review, Microfluidics and Nanofluidics, 8(2): 145-170 (2010).
[6] Murshed S., Leong K., Yang C., Thermophysical and Electrokinetic Properties of Nanofluids–a Critical Review, Applied Thermal Engineering, 28(17-18): 2109-2125 (2008).
[7] Chandrasekar M., Suresh S., Senthilkumar T., Mechanisms Proposed through Experimental Investigations on Thermophysical Properties and Forced Convective Heat Transfer Characteristics of Various Nanofluids–a Review, Renewable and Sustainable Energy Reviews, 16(6): 3917-3938 (2012).
[8] Philip J., Shima P.D., Thermal Properties of Nanofluids, Advances in colloid and interface science, 183: 30-45 (2012).
[9] Suresh S., Venkitaraj K., Selvakumar P., Chandrasekar M., Effect of Al2O3–Cu/Water Hybrid Nanofluid in Heat Transfer, Experimental Thermal and Fluid Science, 38: 54-60 (2012).
[10] Halelfadl S., Maré T., Estellé P., Efficiency of Carbon Nanotubes Water Based Nanofluids as Coolants, Experimental Thermal and Fluid Science, 53: 104-110 (2014).
[11] Mehrali M., Sadeghinezhad E., Latibari S.T., Kazi S.N., Mehrali M., Zubir M.N.B.M., Metselaar H.S.C., Investigation of Thermal Conductivity and Theological Properties of Nanofluids Containing Graphene Nanoplatelets, Nanoscale research letters, 9(1): 15 (2014).
[12] Madhesh D., Parameshwaran R., Kalaiselvam S., Experimental Investigation on Convective Heat Transfer and Rheological Characteristics of Cu–TiO2 Hybrid Nanofluids, Experimental Thermal and Fluid Science, 52: 104-115 (2014).
[13] Haddad Z., Oztop H.F., Abu-Nada E., Mataoui A., A Rview on Natural Convective Heat Transfer of Nanofluids, Renewable and Sustainable Energy Reviews, 16(7): 5363-5378 (2012).
[14] Kuznetsov A., Nield D., Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate, International Journal of Thermal Sciences, 49(2): 243-247 (2010).
[15] Behseresht A., Noghrehabadi A., Ghalambaz M., Natural-Convection Heat and Mass Transfer from a Vertical Cone in Porous Media Filled with Nanofluids using the Practical Ranges of Nanofluids Thermo-Physical Properties, Chemical Engineering Research and Design, 92(3): 447-452 (2014).
[16] Nield D., Kuznetsov A., The Cheng–Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid, International journal of heat and mass transfer, 52(25): 5792-5795 (2009).
[17] Noghrehabadi A., Ghalambaz M., Ghanbarzadeh A., Effects of Variable Viscosity and Thermal Conductivity on Natural-Convection of Nanofluids Past a Vertical Plate in Porous Media, Journal of Mechanics, 30(3): 265-275 (2014).
[18] Keblinski P., Phillpot S., Choi S., Eastman J., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), International journal of heat and mass transfer, 45(4): 855-863 (2002).
[19] Rosensweig R., "Ferrohydrodynamics Dover", New York, (1997).
[20] Krakov M., Nikiforov I., To the Influence of Uniform Magnetic Field on Thermomagnetic Convection in Square Cavity, Journal of Magnetism and Magnetic Materials, 252: 209-211 (2002).
[21] Yamaguchi H., Kobori I., Uehata Y., Shimada K., Natural Convection of Magnetic Fluid in a Rectangular Box, Journal of Magnetism and Magnetic Materials, 201(1-3): 264-267 (1999).
[22] Gavili A., Lajvardi M., Sabbaghzadeh J., The Effect of Magnetic Field Gradient on Ferrofluids Heat Transfer in a Two-Dimensional Enclosure, Journal of Computational and Theoretical Nanoscience, 7(8): 1425-1435 (2010).
[23] Kikura H., Sawada T., Tanahashi T., Natural Convection of a Magnetic Fluid in a Cubic Enclosure, Journal of Magnetism and Magnetic Materials, 122(1-3): 315-318 (1993).
[24] Sawada T., Kikura H., Saito A., Tanahashi T., Natural Convection of a Magnetic Fluid in Concentric Horizontal Annuli under Nonuniform Magnetic Fields, Experimental Thermal and Fluid Science, 7(3): 212-220 (1993).
[25] Snyder S.M., Cader T., Finlayson B.A., Finite Element Model of Magnetoconvection of a Ferrofluid, Journal of Magnetism and Magnetic Materials, 262(2): 269-279 (2003).
[26] Zablockis D., Frishfelds V., Blums E., Numerical Investigation of Thermomagnetic Convection in a Heated Cylinder under the Magnetic Field of a Solenoid, Journal of physics: condensed matter, 20(20): 204134 (2008).
[27] Asfer M., Mehta B., Kumar A., Khandekar S., Panigrahi P.K., Effect of Magnetic Field on Laminar Convective Heat Transfer Characteristics of Ferrofluid Flowing through a Circular Stainless Steel Tube, International Journal of Heat and Fluid Flow, 59: 74-86 (2016).
[28] Hatami N., Banari A.K., Malekzadeh A., Pouranfard A., The Effect of Magnetic Field on Nanofluids Heat Transfer through a Uniformly Heated Horizontal Tube, Physics Letters A, 381(5): 510-515 (2017).
[30] Sundar L.S., Naik M., Sharma K., Singh M., Reddy T.C.S., Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid, Experimental Thermal and Fluid Science, 37: 65-71 (2012).
[31] Chiang Y.-C., Chieh J.-J., Ho C.-C., The Magnetic-Nanofluid Heat Pipe with Superior Thermal Properties through Magnetic Enhancement, Nanoscale research letters, 7(1): 322 (2012).
[32] Goharkhah M., Ashjaee M., Shahabadi M., Experimental Investigation on Convective Heat Transfer and Hydrodynamic Characteristics of Magnetite Nanofluid under the Influence of an Alternating Magnetic Field, International Journal of Thermal Sciences, 99: 113-124 (2016).
[33] Zhang X., Zhang Y., Heat Transfer and Flow Characteristics of Fe3O4-Water Nanofluids under Magnetic Excitation, International Journal of Thermal Sciences, 163: 106826 (2021).
[34] Sun B., Guo Y., Yang D., Li H., The Effect of Constant Magnetic Field on Convective Heat Transfer of Fe3O4/Water Magnetic Nanofluid in Horizontal Circular Tubes, Applied Thermal Engineering, 171: 114920 (2020).
[35] Mehrez Z., Cafsi A.E., Heat Exchange Enhancement of Ferrofluid Flow in to Rectangular Channel in the Presence of a Magnetic Field, Applied Mathematics and Computation, 391: 125634 (2021).
[36] Berger P., Adelman N.B., Beckman K.J., Campbell D.J., Ellis A.B., Lisensky G.C., Preparation and Properties of an Aqueous Ferrofluid, Journal of Chemical Education, 76(7): 943 (1999).
[37] Lee T., Lee J.H., Jeong Y.H., Flow Boiling Critical Heat Flux Characteristics of Magnetic Nanofluid at Atmospheric Pressure and Low Mass Flux Conditions, International journal of heat and mass transfer, 56(1-2): 101-106 (2013).
[38] Bejan A., Kraus A.D., "Heat Transfer Handbook", John Wiley & Sons, (2003).
[39] Sheikhnejad Y., Hosseini R., Avval M.S., Experimental Study on Heat Transfer Enhancement of Laminar Ferrofluid Flow in Horizontal Tube Partially Filled Porous Media under Fixed Parallel Magnet Bars, Journal of Magnetism and Magnetic Materials, 424: 16-25 (2017).
[40] Ali A.H., Kadhum M.H., Saad H.A., Experimental Study of Forced Convection Heat Transfer Ferrofluid in Pipe Exposed to Magnetic Field, International J. Innovative Research in Science, Engineering and Technology, 5: 12008-12017 (2016).
[42] Pastoriza-Gallego M., Lugo L., Legido J., Piñeiro M., Enhancement of Thermal Conductivity and Volumetric Behavior of Fe X O Y Nanofluids, Journal of Applied Physics, 110(1): 014309 (2011).