بهینه سازی جذب سطحی با روش طراحی آزمایش پاسخ سطح برای رنگ آسترازون آبی توسط رزین کوپلیمر استایرن- دی وینیل بنزن سولفونه شده

نوع مقاله : علمی-پژوهشی

نویسندگان

بابل، دانشگاه صنعتی نوشیروانی، دانشکده مهندسی شیمی

چکیده

یافتن جاذب مناسب برای حذف یک رنگ که نسبت به سایر جاذب ها ظرفیت بالاتر داشته باشد و رنگ بیش ‌تری را جذب کند و نیز تعیین شرایط بهینه در استفاده از آن جاذب برای کارخانه‌ های نساجی و محیط زیست از اهمیت ویژه‌ای برخوردار است. هدف از این مطالعه بررسی و بهینه سازی جذب رنگ کاتیونیآسترازون آبی (Astrazon blue) از آب با استفاده از جاذب کوپلیمر سولفونه شده استایرن- دی وینیل بنزن می باشد. در این مطالعه مقدار متغیرهای زمان، مقدار جاذب و غلظت رنگ در محلول با روش طراحی آزمایش، بهینه شدند. به این منظور تعداد 15 آزمایش با روش پاسخ سطحی (RSM) و استفاده از طراحی باکس بنکن (Box-Behnken) توسط نرم افزار Design Expert 7.0.0 Trial طراحی شد که سه عامل زمان، میزان جاذب و غلظت محلول در سه سطح (1+، 0 ، 1-) همراه با سه نقطه مرکز انتخاب شد. در هر آزمایش میزان مشخصی از جاذب در 10 میلی لیتر محلول دارای رنگ کاتیونی قرار داده شد و میزان جذب رنگ در محلول اندازه ‌گیری شد. نتیجه‌ ها نشان داد که زمان، مقدار جاذب و غلظت محلول پارامترهای تأثیرگذار بوده و مقدارهای بهینه برای این متغیرها با استفاده از منحنی‌ های مربوطه نشان داده شد. بیش‌ ترین درصد حذف در این آزمایش ‌ها 98% و بیش‌ ترین ظرفیت جذب 251 میلی گرم بر گرم جاذب بود. این پژوهش نشان داد که جاذب مورد نظر به ‌دلیل درصد حذف و ظرفیت بالا برای جذب رنگ کاتیونی آسترازون آبی می ‌تواند جاذب مناسبی باشد

کلیدواژه‌ها

موضوعات


[1] عبدالشاهی نژاد، سارا؛ برقعی، سید مهدی؛ سیدی، مجتبی؛ حذف کروم شش ظرفیتی توسط نانو ذره­های فریت، نشریه شیمی و مهندسی شیمی ایران، (1)34 : 29 تا 37 (1394).
[3] Crini G., Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review,Bioresour. Technol., 97: 1061–1085 (2006).
[4] Gupta V.K., Suhas, Application of Low-Cost Adsorbents for Dye Removal--A Review, J. Environ. Manage., 90: 2313-2342 (2009).
[5] Forgacs E., Cserhati T., Oros G., Removal of Synthetic Dyes from Wastewaters: A Review, Environ. Int., 30: 953–971 (2004).
[6] Rai H.S., Bhattacharyya M.S., Singh J., Bansal T.K., Vats P., Banerjee U.C., Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques  with Reference to Biological Treatment, Crit. Rev. Environ. Sci. Technol., 35: 219-238 (2005).
[7] Pearce C.I., Lloyd J.R., Guthrie J.T., The Removal of Colour from Textile Wastewater Using Whole Bacterial Cells: A Review, Dyes Pigm., 58: 179-196 (2003).
[8] McMullan G., Meehan C., Conneely A., Kirby N., Robinson T., Nigam P., Banat I., Marchant R., Smyth W., Microbial Decolourisation and Degradation of Textile Dyes, Appl. Microbiol. Biotechnol., 56: 81–87 (2001).
[10] Huang X.-Y., Mao X.-Y., Bu H.-T., Yu X.-Y., Jiang G.-B., Zeng M.-H., Chemical Modification of Chitosan by Tetraethylenepentamine and Adsorption Study for Anionic Dye Removal, Carbohydr. Res., 346: 1232–1240 (2011).
[11] Figueiredo J.L., Pereira M.F.R., "Novel Carbon Adsorbents", in: J.M.D. Tascَn (Ed.), Elsevier, Oxford, pp. 471–498 (2012).
[12] Li J.T., Li B.L., Wang H.C., Bian X.B., Wang X.M., A Wormhole-Structured Mesoporous Carbon with Superior Adsorption for Dyes, Carbon, 49: 1912–1918 (2011).
[13] Beltran de Heredia J., Dominguez J.R., Lَpez R., Treatment of Cork Process Wastewater by a Successive Chemical−Physical Method, J. Agric. Food Chem., 52: 4501-4507 (2004). 
[14] Parasuraman D., Serpe M.J., Poly (n-Isopropylacrylamide) Microgels for Organic Dye Removal from Water , ACS Appl. Mater. Interfaces, 3: 2732–2737 (2011).
[15] Caiizares P., Mart Nez F., Jiménez C., Lobato J., Rodrigo M.A., Coagulation and Electrocoagulation of Wastes Polluted with Dyes, Environ. Sci. Technol., 40: 6418-6424 (2006).
[16] Kartal B., Kuenen J.G., van Loosdrecht M.C.M., Sewage Treatment with Anammox, Science, 328: 702–703 (2010).
[17] Juang R.-S., Shiau R.-C., Metal Removal from Aqueous Solutions Using Chitosan-Enhanced Membrane Filtration , J. Membr. Sci., 165: 159–167 (2000).
[18] Wang S., Li H., Xu L., Application of Zeolite MCM-22 for Basic Dye Removal from Wastewater, J. Colloid Interface Sci., 295: 71–78 (2006).
[19] Li L., Liu S., Zhu T., Application of Activated Carbon Derived from Scrap Tires for Adsorption of Rhodamine BJ. Environ. Sci., 22: 1273-1280 (2010).
[20] Pereira M.F.R., Soares S.F., Rfo J.J.M., Figueiredo J.L., Adsorption of Dyes on Activated Carbons: Influence of Surface Chemical Groups, Carbon, 41: 811– 821 (2003).
[21] Guedidi H., Reinert L., Lévêque J.-M., Soneda Y., Bellakhal N., Duclaux L., The Effects of the Surface Oxidation of Activated Carbon, the Solution pH and the Temperature on Adsorption of Ibuprofen, Carbon, 54: 432–443 (2013).
[22] Al-Ghouti M.A., Khraisheh M.A.M., Allen S.J., Ahmad M.N., The Removal of Dyes from Textile Wastewater: A Study of the Physical Characteristics and Asorption Mechanisms of Diatomaceous Earth, J. Environ. Manage., 69: 229-238 (2003).
[23] Lin J.X., Zhan S.L., Fang M.H., Qian X.Q., The Adsorptionof Dyes from Aqueous Solution Using Diatomite, J. Porous Mater., 14: 449-455 (2007).
[24] Huang C.-H., Chang K.-P., Ou H.-D., Chiang Y.-C., Wang C.-F., Adsorption of Cationic Dyes onto Mesoporous Silica , Micropor. Mesopor. Mater., 141: 102–109 (2011).
[25] Wang S., Li H., Structure Directed Reversible Adsorption of Organic Dye on Mesoporous Silica in Aqueous Solution, Micropor. Mesopor. Mater., 97: 21–26 (2006).
[26] Dong Y., Lu B., Zang S., Zhao J., Wang X., Cai Q., Removal of Methylene Blue from Coloured Effluents by Adsorption onto SBA-15, J. Chem. Technol. Biotechnol., 86: 616–619 (2011).
[27] Chen Z., Zhou L., Zhang F., Yu C., Wei Z., Multicarboxylic Hyperbranched Polyglycerol Modified SBA-15 for the Adsorption of Cationic Dyes and Copper Ions from Aqueous Media , Appl. Surf. Sci., 258: 5291–5298 (2012).
[30] Martin C., Cuellar J., Synthesis of a Novel Magnetic Resin and the Study of Equilibrium in Cation Exchange with Amino Acids, Ind,  Eng, Chem, Res, 43: 475-485 (2004).
[31] Juang R.,  Swei S., Effect of dye Nature on Its Adsorption from Aqueous Solution onto Activated Carbon, Sep. Sci. Technol., 31(15): 2143-2158 (1996).
[32] Rathi P., Saxena R.K., Gupta R., A Novel Alkaline Lipase from Burkholderia Cepacia for Detergent Formulation, Process. Biochem., 37: 187–192 (2001).
[33] Chang Y.C., Lee C.L., Pan T.M., Statistical Optimization of Media Components for the Production of Antrodia Cinnamomea AC0623 in Submerged Cultures, App. Microbiol. Biotechnol., 72: 654–661 (2006).
[35] Cojocaru C., Zakrzewska-Trznadel G., Response Surface Modeling and Optimization of Copper Removal from Aqua Solutions Using Polymer Assisted Ultrafiltration, J. Membrane Sci., 298: 56–70 (2007).
[36] ozer A., Gürbüz G., alimli A. C., Korbahti B.K., Biosorption of Copper(II) Ions on Enteromorpha Prolifera: Application of Response Surface Methodology (RSM), Chem. Eng. J., 146: 377–387 (2009). 
[38] Montgomery D.C., "Design and Analysis of Experiments", fifth ed., John Wiley & Sons, New York, (2001).
[39] Clarke G.M., Kempson R.E., "Introduction to the Design and Analysis of Experi- Ments", Arnold, London, (1997).
[40] Cornell J.A., "Howto Apply Response Surface Methodology", second ed., American Society for Quality Control, Wisconsin, (1990).
[41] Box G., Draper N., "Empirical Model Building and Response Surfaces", John Wiley & Sons, New York, (1987).
[42] Box G.E.P., Behnken D.W., Some New Three Level Designs for the Study of Quantitative Variables, Technometrics, 2: 455-475 (1960).
[43] Ferreira S.L.C., Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brandäo G.C., Da Silva E.G.P., Portugal L.A., Dos Reis P.S., Souza A.S., Dos Santos W.N.L., Box-Behnken Design: An Alternative for the Optimization of Analytica Methods, Analytica Chimica Acta, 597: 179-186 (2007).
[44] Box G.E.P., Draper N.R., "Empirical Model Building and Response Surfaces", John Wiley and Sons, New York,( 1987).
[45] Kamarei F., Ebrahimzadeh H., Yamini Y., Optimization of Solvent Bar Microextraction Combined with Gas Chromatography for the Analysis of Aliphatic Amines in Water Samples, J. Hazard. Mater., 178: 747–752 (2010).
[46] Mottahedin P., Haghighiasl A., Subcritical Water as a Solvent and Its Application for Extraction, Journal of Applied Researches in Chemistry (JARC), 7: 59-81 (2013).
[47]سردشتی، علیرضا ؛ محمدیان مقدم، سعید؛ تعیین ظرفیت تبادل کاتیونی هیومیک اسید استخراج شده از خاک جنگلی نهار خوران گرگان ، نسبت به یون های pb2+، Cd2+ و Ni2+ به روش ناپیوسته ظرفی در محیط آبی، نشریه شیمی و مهندسی شیمی ایران، (3) 26 : 9 تا 17 (1386).
[49] Lacramioara R., Maria H., Andrei I., Daniela S., Gabriela C., Lidia F., Removal of Astrazone Blue from Aqueous Solutions onto Brown Peat. Equilibrium and Kinetics Studies, Kor. J. Chem. Eng., 31(6): 1008-1015 (2014).
[51] سردشتی، ذبیح الله؛ گنجی دوست، حسین؛ آیتی، بیتا؛ حذف رنگ از محلول آبی با خاک اره و رس بنتونیت، نشریه عمران مدرس، (3)11: مقاله 7 (1390).