بررسی سرعت بحرانی همزن در سلول فلوتاسیون مکانیکی آزمایشگاهی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 گروه فرآوری مواد معدنی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

کی از مرحله ­های مهم فلوتاسیون جمع آوری ذره ­ها است که نیازمند برهم کنش موفق حباب- ذره است. پیش از ایجاد برهم کنش حباب- ذره، معلق نگه داشتن ذره ­ها به عنوان مرحله پیش آماده سازی برای شناورسازی و جمع آوری ذره­ ها ضروری است. به طور معمول سرعت بحرانی همزن (Njs) به عنوان معیاری برای معلق نگه داشتن ذره ­های جامد در سلول فلوتاسیون مورد استفاده قرار می ­گیرد که نشان­ دهنده کم­ ترین سرعت همزن مورد نیاز برای معلق نگه داشتن تمام ذره ­های جامد در کف سلول است. در این پژوهش دو مدل تجربی برای  Njsبراساس اختلاف چگالی جامد ـ مایع (ρsl اندازه ذره­ها (dp)، غلظت جامد در پالپ (X)، گرانروی جنبشی مایع (vL) و سرعت ظاهری هوا (Jg) در محیط دو فازی و سه فازی توسعه داده شده است. آزمایش‌ها در یک سلول فلوتاسیون آزمایشگاهی، با استفاده از ذره ­های کوارتز، باریت و گالن در چهار طبقه سرندی انجام شده است. نتیجه ­ها نشان داد که ρsl، dp، X و  vLبه ترتیب مهم­ترین متغیرهای تأثیر گذار بر سرعت بحرانی همزن هستند. سرعت بحرانی همزن
با افزایش
Jg در سلول فلوتاسیون، به صورت خطی افزایش م ی­یابد. بررسی نمودار غلظت جامد بر حسب عمق سلول فلوتاسیون در سرعت­ های گوناگون همزن  نشان داد که در سرعت بحرانی همزن ، ارتفاع سوسپانسیون حدود 8/0-85/0 ارتفاع پالپ است و ذره­ ها در سرعت همزنی معادل 2/1 تا 5/1 برابر سرعت بحرانی همزن توزیع یکنواخت ­تری دارند. از این بازه می ­توان به منظور پیش بینی سرعت بهینه همزن که منجر به افزایش کارایی شناورسازی ذره ­ها شود، استفاده کرد.

کلیدواژه‌ها

موضوعات


[1] Arbiter N., Harris C.C., Yap R.F., Hydrodynamics of Flotation Cells, SME Transactions, 244: 134–148 (1969).
[2] Yianatos J., Bergh L., Condori P., Aguilera J., Hydrodynamic and Metallurgical Characterization of Industrial Flotation Banks for Control Purposes, Minerals Engineering 14: 1033–1046 (2001).
[4] Nienow A.W., The Suspension of Solid Particles, In: Harnby N., Edwards M.F., Nienow A.W. (Eds.), “Mixing in the Process Industries”, 2nd Butterworth-Heinemann, Oxford: 364–393 (1992).
[5] Ayranci I., Kresta S.M.,Critical Analysis of Zwietering Correlation for Solids Suspension in Stirred Tanks, Chemical Engineering Research and Design, 92(3):413-422) 2014(.
[6] Shahbazi B., Rezai B., The Effect of Micro Turbulence on Quartz Flotation Rate, Iran .J. Chem. Chem. Eng. (IJCCE), 34 (3): 77-87 (2015).
[7] Zwietering T.N., Suspending of Solid Particles in Liquid by Agitators, Chemical EngineeringScience, 8(3): 244-253 (1958).
[8] Dutta N., Pangarkar V., Critical Impeller Speed for Solid Suspension in Multi‐Impeller Three Phase Agitated Contactors, The Canadian Journal of Chemical Engineering, 73(3): 273-283 (1995).
[9] Van der Westhuizen A., Deglon D., Solids Suspension in a Pilot-Scale Mechanical Flotation Cell: A Critical Impeller Speed Correlation, Minerals Engineering, 21(8): 621-629 (2008).
[10] Grenville  R.K., Mak A.T.C., Brown D.A.R., Suspension of Solid Particles in Vessels Agitated by Axial Flow Impellers, Chemical Engineering Research and Design, 100(12):282-291 (2015).
[11] Nienow A., Suspension of Solid Particles in Turbine Agitated Baffled Vessels, Chemical Engineering Science, 23(12):1453-1459(1968).
[12] Baldi G., Conti R., and Alaria E., Complete Suspension of Particles in Mechanically Agitated Vessels, Chemical Engineering Science, 33(1): 21-25 (1978).
[13] Myers K.J., Fasano J.B., and Corpstein R.R. ,The Influence of Solid Properties on the Just‐Suspended Agitation Requirements of Pitched‐Blade and High‐Efficiency Impellers, The Canadian Journal of Chemical Engineering, 72(4):745-748 (1994).
[14] Ayranci I., Ng T., Etchlls III A.W.,  Kresta S.M.,Prediction of Just Suspended Speed for Mixed Slurries at High Solids Loadings, Chemical Engineering Research and Design, 91(3):227-223) 2013(.
[15] Ayranci I., Machado M.B., Madej A.M., Derksen J.J., Nobes D.S., Kresta S.M., Effect of Geometry on the Mechanisms for Off-Bottom Solids Suspension in a Stirred Tank, Chemical Engineering Science, 79: 163-176(2012).
[16] Montante G., Lee K., Brucato A., Yianneskis M., Numerical Simulations of the Dependency of Flow Pattern on Impeller Clearance in Stirred Vessels, Chemical Engineering Science, 56(12): 3751-3770(2001).
[18] Nienow A.W., Edwards M.F., Harnby N., “Mixing in the Process Industries”, Butterworth-Heinemann (1997).