سازوکار انتقال یون های توریم (IV) از طریق غشای درون گیره در پلیمر دارای دی- (2- اتیل‌هگزیل) فسفریک اسید به‌عنوان حامل

نوع مقاله : علمی-پژوهشی

نویسندگان

1 پژوهشکده مواد و چرخه‌ی سوخت هسته‌ای، پژوهشگاه علوم وفنون هسته‌ای، سازمان انرژی اتمی ایران، تهران- ایران.

2 دانشکده‌ مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران- ایران.

چکیده

این مطالعه، تحلیلی از سازوکار انتقال یون­ های توریم (IV) در یک غشای درون­ گیره در پلیمر (PIM) ارایه می‌دهد.­ یک PIM دارای پلی وینیل کلرید (PVC) به عنوان پلیمر پایه، و دی- ­(2- اتیل هگزیل) فسفریک اسید (­EHPA­2D) به عنوان حامل مورد استفاده قرار گرفت. اول از همه، تاثیر غلظت حامل به عنوان یک پارامتر مهم در فرایند انتقال مورد بررسی قرار گرفت. هم­چنین پارامترهای فاز آبی شامل غلظت اولیه ­ی توریم (IV) و pH فاز خوراک، غلظت اسید در فاز عریان­ ساز بررسی شد. صرف­ نظر از غلظت اولیه­ ی توریم (IV)، برای شرایط آزمایش، 45 درصد وزنی EHPA­2D به عنوان مقدار بهینه­ ی غلظت حامل، بیش­ترین اثرات را بر روی فرایند انتقال نشان داد. مطالعات سینتیک و سازوکار انتقال یون­ های توریم (IV) نشان داد که انتقال یون­ های توریم (IV) در PIM با معادله­ ی سینتیکی درجه­ ی اول سازگار بوده و سازوکار «جهش»، سازوکار غالب در  انتقال توریم (IV) در سامانه مورد مطالعه است.

کلیدواژه‌ها

موضوعات


[1] Furukawa K., Arakawa K. Berrin Erbay L., Ito Y., Kato Y., Kiyavitskaya H., Lecocq A., Mitachi K., Moir R., Numata H., Pleasant J. Paul, Sato Y., Shimazu Y., Simonenco Vadim A., Sood Din Dayal, Urban C., Yoshioka R., A Road Map for the Realization of Global-scale Thorium Breeding Fuel Cycle by Single Molten-Fluoride Flow,  Energy Conversion and Management, 49: 1832–1848 (2008).
[2]  Dennis K.H., Mushakov A., (2008).Thorium: The Fuel of Future, Nuclear Energy Review, www.thoriumpower.com, 2 (2008).
[3] International Atomic Energy Agency, Thorium Fuel Cycles: Potential Benefits and Challenges, Vienna, Australia: 5-20 (2005).
[6]­ Habashi F., “Textbook of Hydrometallurgy”, Department of Mining and Metallurgy, Laval University, Quebec City, Canada: 430-440 (1993).
[7] Anirudhan T. S., Rijith S., Tharun A. R., “Adsorptive Removal of Thorium (IV) from Aqueous Solutions Using Poly (Methacrylic Acid)-Grafted Chitosan/Bentonite Composite Matrix: Process Design and Equilibrium Studies”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368: 13-22 (2010).
[8] Bhainsa K. C., D'Souza S .F., Thorium Biosorption by Aspergillus Fumigatus, a Filamentous Fungal Biomass, Journal of Hazardous Materials, 165: 670-676 (2009).
[9] Gong, R., Jin, Y., Sun J., Zhong K­., Preparation and Utilization of Rice Straw Bearing Carboxyl Groups for  Removal Basic Dyes from Aqueous Solution, Dyes Pigments, 76: 519–524 (2008).
[10] Koorepazan Moftakhar M., Habibi L., Yaftian M. Reza.,  Selective and Efficient Ligandless Water-in-Oil Emulsion Liquid Membrane Transport of Thorium(IV) Ions, Iran. J. Chem. Chem. Eng (IJCCE)., 35­(­4): 125-134 (2016).
[11] Sarangi K., Das R.P., Separation of Copper and Zinc by Supported Liquid Membrane Using TOPS-99 as Mobile Carrier, Hydrometallurgy 71: 335–342 (2004).  
[12] Tavakoli S., Alamdar Milani S., Shirani A. S., Charkhi, A., Kinetic and Mechanism of Thorium(IV) Transport Through a Bulk Liquid Membrane Containing Di-2-Ethylhexyl Phosphoric Acid in Kerosene, Journal of Separation Science and Engineering., 9(2): 37-50 (2017).
[13] Alamdar Milani S., Zahakifar F.,  Charkhi A., Continuous Bulk Liquid Membrane Technique for Thorium Transport: Modeling and Experimental Validation, Journal of the Iranian Chemical Society, 16(4):1-10 (2018).
[14] Nghiem L. D., Mornane P., Potter I., Perera J., Cattral R., Kolev S., Extraction and Transport of Metal Ions and Small Organic Compounds Using Polymer Inclusion Membranes (PIMs)., Journal of Membrane Science, 281­(1-2): 7-41 (2006).
[15] Mahanty B.,  ­Mohapatra P.K.  ­Raut D.R.,  Das. D.K., ­Behere ­M. Afzal, Verboom W., Polymer Inclusion Membrane Containing a Tripodal Diglycolamide Ligand: Actinide Ion Uptake and Transport Studies, Ind. Eng. Chem. Res.,  55­(7): 2202–2209 (2016).
[16]  Yildiz Y., Manzak A., Aydýn B., Tutkun O.,  Preparation and Application of Polymer Inclusion Membranes (PIMs) Including Alamine 336 for Extraction of Metals from an Aqueous Solution, Material in Technology / Materials and Technology, 48(5): 791–796 (2014).
[17] Koladkar D. V., Dhadke P. M., Extraction and Separation of Th(IV) and U(VI) from Nitric Acid Media Using PIA-8 and HDEHP, J. Radioanal. Nucl. Chem. 253: 297–302 (2002).
[18] El-Hefny N. E., Daoud J. A., Extraction and Separation of Thorium(IV) and Praseodymium (III) With Cyanex 301 and Cyanex 302 from Nitrate Medium, J. Radioanal. Nucl. Chem. 261: 357-363 (2004).
[19] Karve M., Gaur C., Liquid-Liquid Extraction of Th(IV) with Cyanex302, J. Radioanal. Nucl. Chem. 270: 461-464 (2006).
[20] Dinkar A. K., Singh Suman Kumar, Tripathi S. C., Verma R., Reddy A. V. R., Studies on the Separation and Recovery of Thorium from Nitric Acid Medium using (2-ethyl hexyl) Phosphonic Acid, Mono (2-ethyl hexyl) Ester (PC88A)/ N-Dodecane as Extractant System, Separation Science and Technology, 47: 1748–1753 (2012).
[22] Dalai B., Dash S.K., Singh S.K., Swain N., Swain B.B., Physico-Chemical Properties of di-(2-Ethylhexyl) Phosphoric Acid with Apolar Solvents from Ultrasonic Studies, Physics and Chemistry of Liquids: An International Journal,50­(2): 242-253 (2012).
[23] Cathbert F.L., “Thorium Production Technology”, National Lead Company of Ohio, United States of America: 104-120 (1958).
[24] Zebroski E. L., Alter H.W., Heumann F.K., Thorium Complexes with Chloride, Fluoride, Nitrate, Phosphate and Sulfate; J. Am. Chem. Soc., 73: U.S.A: 5646-5650 (1951).
[26] Ferraz H. C., Duarte L. T., Alves M. D. L., Habert A. C., Borges C. P., Recent Achievements in Facilitated Transport Membranes for Separation Processes, Brazilian J. of Chem. Eng., 24: 101-118 (2007).
[27] Ochromowicz K., Apostoluk W., Modelling of Carrier Mediated Transport of Cr(III) in the SLM System With D2EHPA, Separation and Purification Technology, 72: 112-117 (2010).
[30] Cussler E. L,  Aris R., Brown A., On the Limits of Facilitated Diffusion., Journal of Membrane Science, 43: 146-149 (1989).
[31] Gherrou A., Kerdjoudj H., Molinari R., Seta P., Drioli E., Fixed Sites Plasticized Cellulose Triacetate Membranes Containing Crown Ethers for Silver(I), Copper(II) and Gold(III) Ions Transport., Journal of Membrane Science, 228: 49-157 (2004).
[32] White K. M., Smith B.­D., Duggan P.­J., Sheahan S. L., Tyndall E. M., Mechanism of Facilitated Saccharide Transport Through Plasticized Cellulose Triacetate Membranes., Journal of Membrane Science, 194: 165-175 (2001).
[33] Yahaya G. O., Brisdon B. J., England R., Facilitated Transport of Lactic Acid and Its Ethyl Ester by Supported Liquid Membranes Containing Functionalized Polyorganosiloxanes as Carriers, Journal of Membrane Science, 168: 187-201 (2000).
[38] Religa P., Rajewski J., Gierycz P., S´wietlik R., Kinetics of Chromium(III) Transport Through a Liquid Membrane Containing DNNSA as a Carrier, Int J Mol Sci. Mar; 10(3): 964–975 (2009).
[39] Religa P., Rajewski J., Gierycz P.; S´wietlik, R., Supported Liquid Membrane System for Cr(III) Separation from Cr(III)/Cr(VI) Mixtures, Water Sci Technol, 69(12):2476-2481 (2014).
[40] Zawierucha Iwona, Nowik-Zajac Anna, Kozlowski Cezary A., Removal of Pb(II) Ions Using Polymer Inclusion Membranes Containing Calix[4]Resorcinarene Derivative as Ion Carrier, Polymers (Basel)., 11(12): 2111 (2019).
[41] ­Meng X.,  Wang L., ­Tang W., Transport of Phenol Through Polymer Inclusion Membrane with N,N-Di(1-Methylheptyl) Acetamide as Carriers from Aqueous Solution, Journal of Membrane Science,  493:  615-621 (2015).
[42] Xiaorong M., Conghui W., Pan. Xiaoqiang X., Lei W., Transport and Selectivity of Indium Through Polymer Inclusion Membrane in Hydrochloric Acid Medium, Frontiers of Environmental Science & Engineering, 11(6): 1-10 (2017).
[45] Munro T.A., Smith B.D., Facilitated Transport of Amino Acids by Fixed Site Jumping, Chem. Commun., 22: 2167–2168 (1997).
[47] Kebiche-Senhadji O., Tingry S., Seta P., Benamor M., Selective Extraction of Cr(VI) Over Metallic Species by Polymer Inclusion Membrane (PIM) Using Anion (Aliquat 336) as CarrierDesalination, 258:  59–65 (2010).
[50] de Gyves J., Rodr´ıguez de San Miguel E., Metal Ion Separations by Supported Liquid Membranes, Ind. Eng. Chem. Res. 38: 2182 (1999).
[51] Mohapatra P.K., Pathak P.N., Kelkar A., Manchanda V.K., Novel Polymer Inclusion Membrane Containing a Macrocyclic Ionophore for Selective Removal of Strontium from Nuclear Waste Solution, New. J. Chem. 28: 1004 (2004).
[52] Font`as C., Tayeb R., Dhahbi M., Gaudichet E., Thominette F., Roy P., Steenkeste K., Fontaine-Aupart M-P, Tingry S., Tronel-Peyroz E., Seta P., Polymer Inclusion Membranes: The Concept of Fixed Sites Membrane Revised, 290: 62–72 (2007).
[53] Nandita PANDA, Nihar Bala DEVI, Sujata MISHRA, Solvent Extraction of Praseodymium(III) from Acidic Nitrate Medium Using Cyanex 921 and Cyanex 923 as Extractants in Kerosene, Turk J Chem, 38: 504 – 511 (2014).