بررسی اثر تقویت کننده مولیبدن در نانوبلورهای ZIF-8 به منظور کاربرد در جذب سطحی گازهای CO2 و CH4

نوع مقاله : علمی-پژوهشی

نویسندگان

1 1 پژوهشکده پتروشیمی، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

2 گروه شیمی کاربردی، دانشکده شیمی، دانشگاه خوارزمی، تهران، ایران

3 گروه پلیمرهای زیست‌سازگار، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

4 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند تبریز، تبریز، ایران

5 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

6 پژوهشکده پتروشیمی، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

چکیده

در این مطالعه، نانوبلور‏های ایمیدازولات زئولیتی (ZIF-8) به روش حلال ـ گرمایی سنتز شده و اصلاح آن­ها، توسط تقویت کننده مولیبدن (Mo) انجام شد. اصلاح گفته شده، به دو روش شامل بارگذاری مولیبدن در ساختار ZIF-8 و دیگری توسط تلقیح آن صورت پذیرفت. هم دما­های جذب CO2 و CH4 در گستره‏ های دمایی K 328-298 و گستره فشاری bar 4-1 با روش افت فشار تعیین شدند. نتیجه­ های به دست آمده بیانگر آن است که استفاده از تقویت کننده مولیبدن، تغییرهای قابل ملاحظه ‏ای را در خصوصیات ساختاری نانوبلور­های ZIF-8، مانند مساحت سطح ویژه، حجم حفرات و همچنین خصوصیات جذب سطحی ایجاد می‏ کند. افزون بر این، جذب گاز CO2 در نانوبلورهای اصلاح شده کمتر از مقدار همانند آن در نانوبلور­های ZIF-8 قبل از اصلاح، به دست آمد. از سوی دیگر، میزان گزینش ­گری جذبی CO2/CH4 در نانوبلور­های ZIF-8  اصلاح شده به روش تلقیح، به میزان %85 در مقایسه با ZIF-8  اصلاح نشده  افزایش داشته است.

کلیدواژه‌ها

موضوعات


[1] Zhang Z., Xian S., Xi H., Wang H., Li Z., Improvement of CO2 Adsorption on ZIF-8 Crystals Modified by Enhancing Basicity of Surface, Chem. Eng. Sci., 66: 4878-4888 (2011).
[2] Andriani D., Wresta A., Atmaja T.D., Saepudin A., A Review on Optimization Production and Upgrading Biogas Through CO 2 Removal Using Various Techniques, Applied. Biochem. Biotech., 172: 1909-1928  (2014).
[4] مختاری حسینی،ز.ب؛ شنوائی زارع، ت؛ کمالی فر،ی، حذف کربن دی‌اکسید از گاز دودکش کارخانه سیمان توسط کلینوپتیلولیت طبیعی منطقه سبزوار، نشریه شیمی و مهندسی شیمی ایران، (2)34: 63 تا 72 (1394).
[5] رضایی، ف؛ صدرعاملی، س.م؛ توفیقی داریان، ج؛ مفرحی، م، جداسازی مخلوط گازی کربن دی‌اکسید و نیتروژن با روش جذب سطحی با تناوب فشار ـ خلاء، نشریه شیمی و مهندسی شیمی ایران، (3)32: 39 تا 45  (1392).
[6] Zhang C., Lively R.P., Zhang K., Johnson J.R., Karvan O., Koros W.J., Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8J.Phys. Chem. Lett., 3: 2130-2134 (2012).
[7] Saliba D., Ammar M., Rammal M., Al-Ghoul M., Hmadeh M., Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives, J.  Am. Chem. Soc., 140: 1812-1823 (2018).
[8] انبیاء ،م؛ اشراقی، ف؛ سنتز و شناسایی CNT@MOF-199 به منظور افزایش جذب گاز CO2، نشریه شیمی و مهندسی شیمی ایران،  (1)38: 45 تا  53 (1398).
[9] عباسی، ا.ر؛ قاسم‌پور، ح؛ ابراهیم‌زاده، م.ا؛ بابایی، ف؛ خانپور متی کلایی، م؛ مرسلی، ع، اهمیت و کاربرد نانوچارچوب‌های فلز-آلی در جذب، ذخیره و آزادسازی متان ، نشریه شیمی و مهندسی شیمی ایران، (3)37: 1 تا 11 (1397).
[10] Sabouni R., Kazemian H., Rohani S., Carbon Dioxide Capturing Technologies: A Review Focusing on Metal Organic Framework Materials (MOFs), Env. Sci. Pollut. Res., 21: 5427-5449 (2014).
[11] Dhakshinamoorthy A., Opanasenko M., Čejka J., Garcia H., Metal Organic Frameworks as Heterogeneous Catalysts for the Production of Fine Chemicals, Cat. Sci. Tech., 3: 2509-2540 (2013).
[12] Ahmadi M., Taş E., Kılıç A.e., Kumbaracı V., Talınlı N., Ahunbay M.G.k., Tantekin-Ersolmaz S.B.l., Highly CO2 Selective Microporous Metal-Imidazolate Framework-Based Mixed Matrix Membranes, ACS. Applied. Mat. Interfaces., 9: 35936-35946 (2017).
[13] Li B., Zhang Z., Li Y., Yao K., Zhu Y., Deng Z., Yang F., Zhou X., Li G., Wu H., Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO2 by Dual Functionalization of a rht‐Type Metal–Organic Framework, Angewandte. Chem. International. Edit., 51: 1412-1415 (2012).
[14] Hu L., Liu J., Zhu L., Hou X., Huang L., Lin H., Cheng J., Highly Permeable Mixed Matrix Materials Comprising ZIF-8 Nanoparticles in Rubbery Amorphous Poly(Ethylene Oxide) for CO2 Capture, Sep. Pur. Tech., 205: 58-65  (2018).
[15] Chmelik C., van Baten J., Krishna R., Hindering Effects in Diffusion of CO2/CH4 Mixtures in ZIF-8 Crystals, J. Mem. Sci., 397: 87-91 (2012).
[16] Cacho-Bailo F., Seoane B., Téllez C., Coronas J., ZIF-8 Continuous Membrane on Porous Polysulfone for Hydrogen Separation, J. Mem. Sci., 464: 119-126 (2014).
[17] Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O’Keeffe M., Yaghi O.M., Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, Proceed. Nat. Acad . Sci., 103: 10186-10191 (2006).
[18] Küsgens P., Rose M., Senkovska I., Fröde H., Henschel A., Siegle S., Kaskel S., Characterization of Metal-Organic Frameworks by Water Adsorption, Microporous. Mesoporous. Mat., 120: 325-330 (2009).
[19] Fairen-Jimenez D., Galvelis R., Torrisi A., Gellan A.D., Wharmby M.T., Wright P.A., Mellot-Draznieks C., Dueren T., Flexibility and Swing Effect on the Adsorption of Energy-Related Gases on ZIF-8: Combined Experimental and Simulation Study, Dalton. Trans., 41: 10752-10762 (2012).
[20] Venna S.R., Carreon M.A., Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation, J. Am. Chem. Soc., 132: 76-78  (2010).
[21] Zhang Z., Xian S., Xia Q., Wang H., Li Z., Li J., Enhancement of CO2 Adsorption and CO2/N2 Selectivity on ZIF‐8 via Postsynthetic Modification, J. AIChE., 59: 2195-2206 (2013).
[22] Pokhrel J., Bhoria N., Anastasiou S., Tsoufis T., Gournis D., Romanos G., Karanikolos G.N., CO2 Adsorption Behavior of Amine-Functionalized ZIF-8, Graphene Oxide, and ZIF-8/Graphene Oxide Composites Under Dry and Wet Conditions, Microporous. Mesoporous. Mat., 267: 53-67 (2018).
[23] Awadallah-F A., Hillman F., Al-Muhtaseb S.A., Jeong H.-K., Adsorption Equilibrium and Kinetics of Nitrogen, Methane and Carbon Dioxide Gases onto ZIF-8, Cu10%/ZIF-8, and Cu30%/ZIF-8, Indust. Eng. Chem. Res., 58: 6653-6661 (2019).
[25] Russell B.A., Migone A.D., Low Temperature Adsorption Study of CO2 in ZIF-8, Microporous. Mesoporous Mat., 246: 178-185 (2017).
[27] Cravillon J., Münzer S., Lohmeier S.-J., Feldhoff A., Huber K., Wiebcke M., Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework, (2009).
[28] Wang Z.-B., Zuo P.-J., Yin G.-P., Investigations of Compositions and Performance of PtRuMo/C Ternary Catalysts for Methanol Electrooxidation, Fuel. Cells., 9: 106-113 (2009).
[29] Koros W.J., Paul D.R., Design Considerations for Measurement of Gas Sorption in Polymers by Pressure Decay, J. Polym. Sci. Part B: Polym. Phys. Ed., 14: 1903–1907  (1976).
[30] Bondar V.I., Freeman B.D., Pinnau I., Gas Sorption and Characterization of Poly(Ether-B-Amide) Segmented Block Copolymers, J. Polym. Sci. Part B: Polym. Phys., 37: 2463–2475 (1999).
[31] Stoyanova A., Iordanova R., Mancheva M., Dimitriev Y., Synthesis and Structural Characterization of MoO3 Phases Obtained from Molybdic Acid by Addition of HNO3 and H2O2, J. Optoelectronics .Adv.Mat., 11: 1127  (2009).
[32] Ahmad N., Samavati A., M. Nordin N.A.H., Jaafar J., Ismail A.F., Malek N.A.N.N., Enhanced Performance and Antibacterial Properties of Amine-Functionalized ZIF-8-Decorated GO for Ultrafiltration Membrane, Sep. Pur.Tech., 239: 116554  (2020).
[33] Zhu J., Jiang L., Dai C., Yang N., Lei Z., Gas Adsorption in Shaped Zeolitic Imidazolate Framework-8, Chinese Chem. Eng., 23: 1275-1282 (2015).
[34] Lee T., Kim H., Cho W., Han D.-Y., Ridwan M., Yoon C.W., Lee J.S., Choi N., Ha K.-S., Yip A.C.K., Choi J., Thermosensitive Structural Changes and Adsorption Properties of Zeolitic Imidazolate Framework-8 (ZIF-8)J. Phys. Chem. C., 119: 8226-8237 (2015).
[35] Thi Thanh M., Vinh Thien T., Thi Thanh Chau V., Dinh Du P., Phi Hung N., Quang Khieu D., Synthesis of Iron Doped Zeolite Imidazolate Framework-8 and Its Remazol Deep Black RGB Dye Adsorption Ability, J. Chem., 5045973 (2017).
[36] Ding S., Yan Q., Jiang H., Zhong Z., Chen R., Xing W., Fabrication of Pd@ ZIF-8 Catalysts with Different Pd Spatial Distributions and Their Catalytic Properties, J. Chem. Eng., 296: 146-153 (2016).
[37] Lu G., Li S., Guo Z.,. Farha O.K, Hauser B.G., Qi X., Wang Y., Wang X., Han S., Liu X., Imparting Functionality to a Metal–Organic Framework Material by Controlled Nanoparticle Encapsulation, Nature Chemistry., 4: 310-316 (2012).
[38] Jusoh N., Yeong Y.F., Lau K.K., Shariff A.M., Mixed Matrix Membranes Comprising of ZIF-8 Nanofillers for Enhanced Gas Transport Properties, Proc. Eng., 148: 1259-1265 (2016).
[39] Kida K., Okita M., Fujita K., Tanaka S., Miyake Y., Formation of High Crystalline ZIF-8 in an Aqueous Solution, Cryst. Eng. Comm., 15: 1794-1801 (2013).
[40] Danaci D., Singh R., Xiao P., Webley P.A., Assessment of ZIF Materials for CO2 Capture from High Pressure Natural Gas Streams, J. Chem. Eng., 280: 486-493 (2015).
[41] Yang Y., Ge L., Rudolph V., Zhu Z., In Situ Synthesis of Zeolitic Imidazolate Frameworks/Carbon Nanotube Composites with Enhanced CO2 Adsorption, Dalton Trans., 43: 7028-7036 (2014).
[42] Chizallet C., Lazare S., Bazer-Bachi D., Bonnier F., Lecocq V., Soyer E., Quoineaud A.-A., Bats N., Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FT-IR and ab Initio Calculations, J. Am. Chem. Soc., 132: 12365-12377 (2010).
[43] Chen L., Li H., Fu J., Miao C., Lv P., Yuan Z., Catalytic Hydroprocessing of Fatty Acid Methyl Esters to Renewable Alkane Fuels over Ni/HZSM-5 Catalyst, Cat. Today., 259: 266-276 (2016).
[44] Khan I.U., Othman M.H.D., Jilani A., Ismail A.F., Hashim H., Jaafar J., Rahman M.A., Rehman G.U., Economical, Environmental Friendly Synthesis, Characterization for the Production of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles with Enhanced CO2 Adsorption, Arab. J. Chem., 11: 1072-1083 (2018).
[45] Sarker A.I., Aroonwilas A., Veawab A., Equilibrium and Kinetic Behaviour of CO2 Adsorption onto Zeolites, Carbon Molecular Sieve and Activated Carbons, Ener. Procedia., 114: 2450-2459  (2017).
[46] Haldoupis E., Watanabe T., Nair S., Sholl D.S., Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4 and CO2 in ZIF-8, J. Phys. Chem., 13: 3449-3452 (2012).
[47] Konik P., Yablokova M., Yankova N., Berdonosova E., Gasanova L., Meshcheryakova E., Klyamkin S., The Influence of Polymer Concentration and Formation Technique on Gas Transport and Gas Sorption Properties of Copolyetherimide-Based Composite Membranes Containing MIL-101 Filler, Moscow. Univ. Chem. Bulletin., 74: 273-278 (2019).
[48] Huang H., Zhang W., Liu D., Liu B., Chen G., Zhong C., Effect of Temperature on Gas Adsorption and Separation in ZIF-8: A Combined Experimental and Molecular Simulation Study, Chem. Eng. Sci., 66: 6297-6305 (2011).
[49] McEwen J., Hayman J.-D., Ozgur Yazaydin A., A Comparative Study of CO2, CH4 and N2 Adsorption in ZIF-8, Zeolite-13X and BPL Activated Carbon, J. Chem. Phys., 412: 72-76 (2013).
[50] Kinik F.P., Altintas C., Balci V., Koyuturk B., Uzun A., Keskin S., [BMIM][PF6] Incorporation Doubles CO2 Selectivity of ZIF-8: Elucidation of Interactions and Their Consequences on Performance, ACS. Applied. Mat. Interfaces., 8: 30992-31005 (2016).
[51] Samarasinghe S.A.S.C., Chuah C.Y., Yang Y., Bae T.-H., Tailoring CO2/CH4 Separation Properties of Mixed-Matrix Membranes via Combined use of Two- and Three-Dimensional Metal-Organic Frameworks, J. Mem. Sci., 557: 30-37 (2018).
[53] Anastasiou S., Bhoria N., Pokhrel J., Kumar Reddy K.S., Srinivasakannan C., Wang K., Karanikolos G.N., Metal-Organic Framework/Graphene Oxide Composite Fillers in Mixed-Matrix Membranes for CO2 Separation, Mat. Chem. Phys., 212: 513-522 (2018).
[54] Seoane B., Coronas J., Gascon I., Benavides M.E., Karvan O., Caro J., Kapteijn F., Gascon J., Metal–Organic Framework Based Mixed Matrix Membranes: A Solution for Highly Efficient CO2 Capture?, Chem. Soci. Rev., 44: 2421-2454 (2015).
[55] Khdhayyer M.R., Esposito E., Fuoco A., Monteleone M., Giorno L., Jansen J.C., Attfield M.P., Budd P.M., Mixed Matrix Membranes Based on UiO-66 MOFs in the Polymer of Intrinsic Microporosity PIM-1, Sep. Pur. Tech., 173: 304-313 (2017).
[56] Fulong C.R.P., Liu J., Pastore V.J., Lin H., Cook T.R., Mixed-Matrix Materials using Metal-Organic Polyhedra with Enhanced Compatibility for Membrane Gas Separation, Dalton. Trans., (2018).
[57] Thornton A.W., Dubbeldam D., Liu M.S., Ladewig B.P., Hill A.J., Hill M.R., Feasibility of Zeolitic Imidazolate Framework Membranes for Clean Energy Applications, Energy. Env. Sci., 5: 7637-7646 (2012).
[58] Tsai C.-W., Niemantsverdriet J.W., Langner E.H.G., Enhanced CO2 Adsorption in Nano-ZIF-8 Modified by Solvent Assisted Ligand Exchange, Microporous. Mesoporous. Mat., 262: 98-105 (2018).
[59] Zhang Z., Xian S., Xia Q., Wang H., Li Z., Li J., Enhancement of CO2 Adsorption and CO2/N2 Selectivity on ZIF-8 via Postsynthetic Modification, AIChE Journal, 59: 2195-2206 (2013).
[60] Ghosal P.S., Gupta A.K., Determination of Thermodynamic Parameters from Langmuir Isotherm Constant-Revisited, J. Molec. Liq., 225: 137-146  (2017).
[61] جعفری بهبهانی، ت؛  سعیدی مهر، ا، مطالعه و بررسی جذب تعادلی گازها درجاذب های جامد، فصلنامه علمی ترویجی فرایند نو، 8 : 29 تا 38 (1394).
[62] Liu G., Chernikova V., Liu Y., Zhang K., Belmabkhout Y., Shekhah O., Zhang C., Yi S., Eddaoudi M., Koros W.J., Mixed Matrix Formulations with MOF Molecular Sieving for Key Energy-Intensive Separations, Nat. Mat., 17: 283-289 (2018).
[63] سنایی پور، ح؛ عبادی عموقین، آ؛ مقدسی، ع؛ کارگری، ع.؛ قنبری، د.؛ شیخی مهرآبادی، ز؛  قائمی، م، مطالعه خواص جداسازی گاز در غشای آلیاژی پلیمری جدید ABS/PVAc نشریه شیمی و مهندسی شیمی ایران،
 (2)30: 43 تا 51 (1391).
[64] Baker R.W.," Membrane Technology and Applications"., John Wiley & Sons, (2012).