بررسی کارایی نانوکامپوزیت Sr-Ce-ZnO/Hap در تخریب کاتالیستی نوری آلاینده رودامین B در حضور نور مرئی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده شیمی، گروه شیمی معدنی، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران

چکیده

در این پژوهش، سنتز و شناسایی نانوکامپوزیت اصلاح شده Sr-Ce-ZnO/Hap  در تخریب آلاینده رودامین B تحت تابش مرئی مورد بررسی قرار گرفت. ساختار نانوکامپوزیت Sr-Ce-ZnO/HAp با استفاده از طیف‌سنجی تبدیل فوریه فروسرخ (FT-IR)، پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، طیف‌سنجی پراش انرژی پرتو ایکس(EDX) ، دستگاه طیف‌سنجی مرئی ـ فرابنفش (UV-Visطیف بازتاب پخشی (DRS) و اندازه‌گیری تخلخل ­سنجی جذب و واجذب با آنالیز BET تایید شد. ارزیابی­ ها نشان دادند که آلایش با کاتیون های فلزی و حضور هیدروکسی آپاتیت منجر به کاهش شکاف انرژی، افزایش سطح، افزایش جذب و کاهش بازترکیب الکترون ـ روزنه می ­شود. همچنین نتیجه‌ها نشان دادند که مقدار بیش از 91 درصد رودامین B طی مدت زمان 90 دقیقه پس از آغاز واکنش حذف شد. سنتیک واکنش مرتبه اول و ثابت سرعت min-1 023/0 به دست آمد.

کلیدواژه‌ها

موضوعات


[1] Wang J., Fan X. M., Wu D. Z., Dai J., Liu H., Liu H. R., Zhou Z. W. Fabrication of CuO/T-ZnOw Nanocomposites using Photo-Deposition and their Photocatalytic Property. Appl. Surf. Sci., 258: 1797-1805 (2011).
[2] Abdussalam-Mohammed W., Qasem Ali A., Errayes O.A., Green Chemistry: Principles, Applications, and Disadvantages, Chem. Methodol., 4:408-423 (2020).
[3] Bader N., Hasan H., EL-Denali A. Determination of Cu, Co, and Pb in Selected Frozen Fish Tissues Collected from Benghazi Markets in Libya, Chem. Methodol., 2:56-63 (2018).
[5] Chong M. N., Jin B., Chow C. W., Saint C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res., 44: 2997-3027 (2010).
[7] Haaken D., Schmalz V., Dittmar T., Worch E. Limits of UV Disinfection: UV/Electrolysis Hybrid Technology as a Promising Alternative for direct reuse of biologically treated wastewater. J. Water Supply Res. Technol., 62: 442-451 (2013).
[8] Derakhshan-Nejad A., Cheraghi M., Rangkooy H., Jalillzadeh Yengejeh R., Photo Catalytic Activity of TiO2 Immobilized on a 13X Zeolite Based in Removal of Ethyl Benzene Vapors under Visible Light Irradiation, Chem. Methodol., 5:50-58 (2021).
[9] Chong M.N., Jin B., Chow C.W., Saint C., Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res., 44: 2997-3027 (2010).
[10] Nik Athirah Y., Ong S. A., Ho L. N., Wong Y. S., Wan Fadhilah K. Degradation of Phenol through Solar-Photocatalytic Treatment by Zinc Oxide in Aqueous Solution. Desalination Water Treat., 54: 1621-1628 (2015).
[11] Ali I. New Generation Adsorbents for Water Treatment. Chem. Rev., 112: 5073-5091 (2012).
[12] Abbasi M. A., Ibupoto Z. H., Khan A., Nur O., Willander M. Fabrication of UV Photo-Detector based on Coral Reef Like p-NiO/n-ZnO Nanocomposite Structures. Mater. Lett., 108: 149-152 (2013).
[13] Bai X., Wang L., Zong R., Lv Y., Sun Y., Zhu Y., Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization. Langmuir. 29: 3097-3105 (2013).
[14] Von Wenckstern, H., Schmidt H., Brandt M., Lajn A., Pickenhain R., Lorenz M., Grundmann M., Hofmann D.M., Polity A., Meyer B.K. Saal H. Anionic and Cationic Substitution in ZnO. Prog. Solid. State Chem, 37: 153-172 (2009).
[16] Lv H., Ji G., Yang Z., Liu Y., Zhang X., Liu W., Zhang H. Enhancement Photocatalytic Activity of the Graphite-Like C3N4 Coated Hollow Pencil-Like ZnO. J. Colloid Interface Sci., 450: 381-387 (2015).
[17] Chang X., Li Z., Zhai X., Sun S., Gu D., Dong L., Yin Y., Zhu Y., Efficient Synthesis of Sunlight-Driven ZnO-based Heterogeneous Photocatalysts. Materials & Design, 98:324-332 (2016).
[18] Zhang L., Wang W., Sun S., Sun Y., Gao E., Zhang Z., Elimination of BPA Endocrine Disruptor by Magnetic BiOBr@ SiO2@ Fe3O4 Photocatalyst.  Appl. Catal. B148:164-169 (2014).
[19] Rehman S., Ullah R., Butt A., Gohar N. D., Strategies of Making TiO2 and ZnO Visible Light Active. J. Hazard. Mater., 170: 560-569 (2009).
[20] Iqbal J., Liu X., Zhu H., Wu Z. B., Zhang Y., Yu D., Yu, R., Raman and Highly Ultraviolet Red-Shifted Near Band-Edge Properties of LaCe-co-Doped ZnO Nanoparticles. Acta materialia, 57: 4790-4796 (2009).
[23] Fouad F. A., Ahmed M. A., Antonious M. S., Abdel-Messi M. F. Synthesis of an Efficient, Stable and Recyclable AgVO3/ZnO Nanocomposites with Mixed Crystalline Phases for Photocatalytic Removal of Rhodamine B Dye. J. Mater. Sci. Mater., 31: 12355–12371 (2020).
[24] Li J., Chen Z., Fang J., Yang Q., Yang X., Zhao W., Zhou D., Qian X., Liu C. Shao J., Facile Synthesis of TiO2 Film on Glass for the Photocatalytic Removal of Rhodamine B and Tetracycline Hydrochloride. Mater. Express, 9: 437-443 (2019).
[25] Huang H., Zhang J., Jiang L., Zang Z., Preparation of Cubic Cu2O Nanoparticles Wrapped by Reduced Graphene Oxide for the Efficient Removal of Rhodamine B. J. Alloys Compd., 718: 112-115 (2017).
[27] Sharma N., Jha R., Baghel S., Sharma D., Study on Photocatalyst Zinc Oxide Annealed at Different Temperatures for Photodegradation of Eosin Y Dye. J. Alloys Compd., 695: 270-279 (2017).
[29] Soto-Vázquez L., Cotto M., Morant C., Duconge J., Márquez, F., Facile Synthesis of ZnO Nanoparticles and its Photocatalytic Activity in the Degradation of 2-Phenylbenzimidazole-5-Sulfonic Acid. J. Photochem. Photobiol. A, 332: 331-336 (2017).
[30] Wang Z., Li Y., Wang J., Zou M., Gao J., Kong Y., Li K., Han G., Spectroscopic Analyses on Sonocatalytic Damage to Bovine Serum Albumin (BSA) Induced by ZnO/Hydroxylapatite (ZnO/HA) Composite under Ultrasonic Irradiation. Spectrochim. Acta A: 94: 228-234 (2012).
[31] Li Y., Wang D., Lim S., Fabrication and Applications of Metal-Ion-Doped Hydroxyapatite Nanoparticles. JOJ Mater. Sci., 1: 1-5 (2017).
[32] Bouropoulos N., Stampolakis A., Mouzakis, D.E., Dynamic Mechanical Properties of Calcium Alginate-Hydroxyapatite Nanocomposite Hydrogels. Sci. Adv. Mater.2: 239-242 (2010).
[33] Shatnawi M., Alsmadi A.M., Bsoul I., Salameh B., Mathai M., Alnawashi G., Alzoubi G.M., Al-Dweri F., Bawa’aneh M.S., Influence of Mn Doping on the Magnetic and Optical Properties of ZnO Nanocrystalline Particles. Results Phys.6: 1064-1071 (2016).
[34] Subash B., Krishnakumar B., Velmurugan R., Swaminathan M., Shanthi M., Synthesis of Ce co-Doped Ag–ZnO Photocatalyst with Excellent Performance for NBB Dye Degradation under Natural Sunlight Illumination. Cat. Sci. Technol., 2: 2319-2326 (2012).
[36] Ahmad M., Ahmed E., Zafar F., Khalid N.R., Niaz N.A., Hafeez A., Ikram M., Khan M.A., Zhanglian H.O.N.G., Enhanced Photocatalytic Activity of Ce-Doped ZnO Nanopowders Synthesized by Combustion Method. J. Rare Earths, 33: 255-262 (2015).
[37] Kumar A., Subash B., Krishnakumar B., Sobral A. J., Sankaran K. R. Synthesis, Characterization and Excellent Catalytic Activity of Modified ZnO Photocatalyst for RR 120 Dye Degradation under UV-A and Solar Light Illumination. J. Water Proc. Eng., 13: 6-15 (2016).
[39] Yang J.H, Zheng J.H, Zhai H.J, Yang L.L, Zhang Y.J, Lang J.H, Gao M., Growth Mechanism and Optical Properties of ZnO Nanotube by the Hydrothermal Method on Si Substrates. J. Alloys Compd., 475:741-744 (2009).
[40] Nikpour      P., Slimi kenari H., Rabiee S. M., Nanocomposite Hydrogels based on Ceramic Nanoparticles with Applications in Tissue Engineering, Iran. Polym. Technol. Rese. Dev., 3:5-17 (2018).
[42] Praveen R., Chandreshia C. B., Ramaraj R., Silicate Sol–Gel Matrix Stabilized ZnO–Ag Nanocomposites Materials and their Environmental Remediation Applications. J. Environ. Chem. Eng., 6: 3702-3708 (2018).