مدل سازی و بهینه سازی راکتور تری ریفورمینگ متان در شرایط گوناگون خوراک دهی جانبی با هدف بیشینه کردن بهره ی هیدروژن

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

استفاده از راکتورهای غشایی برای توزیع یک یا چند ماده در طول بستر کاتالیستی (خوراک­دهی جانبی) یکی از روش های موثر در کنترل مسیر انجام واکنش برای رسیدن به بهترین عملکرد راکتور می­ باشد. در این پژوهش­، بهینه­ سازی سه ساختار راکتور غشایی و راکتور مرسوم تری ریفورمینگ متان با هدف بیشینه کردن بهره­ی هیدروژن برای تولید گاز سنتز مناسب برای فرایندهای بعدی شامل سنتز مستقیم دی­متیل اتر، متانول و فیشرتروپش انجام شده­است. در این راستا، یک آنالیز حساسیت برای شناسایی پارامترهای موثر بر بهره ی هیدروژن در راکتورهای غشایی اکسیژن، دی اکسید کربن و بخارآب انجام شد. مقایسه بین این راکتورها در شرایط بهینه نشان می­ دهد که راکتور غشایی اکسیژن دارای مزایایی مانند افزایش میزان تبدیل متان و بهره­ ی هیدروژن و افزایش طول عمر کاتالیست بخاطر حذف نقطه ی داغ در پروفایل دمایی راکتور نسبت به سایر ساختارها می­باشد. همچنین بهره ی هیدروژن در راکتور غشایی اکسیژن به ترتیب 8 و 10 درصد نسبت به راکتور مرسوم در شرایط تولید گاز سنتز مناسب برای فرایندهای تولید متانول و دی تیل اتر افزایش یافته است.

کلیدواژه‌ها

موضوعات


[2] Akbari-Emadabadi S., Rahimpour M.R., Hafizi A., Keshavarz P., Production of Hydrogen-rich Syngas Using Zr Modified Ca-Co Bifunctional Catalyst-sorbent in Chemical Looping Steam Methane Reforming, Applied Energy, 206: 51-62 (2017).
[3] Singha R.K., Shukla A., Yadav A., Adak S., Iqbal Z., Siddiqui N., Bal R., Energy Efficient Methane Tri-reforming for Synthesis Gas Production over Highly Coke Resistant Nanocrystalline Ni–ZrO2 Catalyst, Applied Energy, 178: 110-125 (2016).
[4] Matar M., Mirbach M.J., Tayim H.A., "Catalysis in Petrochemical Processes" Kluwer Academic Publishers, Springer, Netherlands (1988).
[5] Özkara-Aydınoğlu Ş., Thermodynamic Equilibrium Analysis of Combined Carbon Dioxide Reforming with Steam Reforming of Methane to Synthesis Gas, International Journal of Hydrogen Energy, 35(23): 12821-12828 (2010).
[6] Cho W., Song T., Mitsos A., McKinnon J.T., Ko G.H., Tolsma J.E., Denholm D., Park T., Optimal Design and Operation of a Natural Gas Tri-reforming Reactor for DME Synthesis, Catalysis Today, 139(4): 261-267 (2009).
[7] Song C. Tri-reforming: A New Process for Reducing CO2 Emissions. Chemical Innovation, 31(1): 21-26 (2001).
[8] Rahimpour M.R., Aboosadi Z.A., Jahanmiri A., Synthesis Gas Production in a Novel Hydrogen and Oxygen Perm-selective Membranes Tri-reformer for Methanol Production. Journal of Natural Gas Science and Engineering, 9: 149-159 (2012).
[9] García-Vargas J.M., Valverde J.L., de Lucas-Consuegra A., Gómez-Monedero B., Dorado F., Sánchez P., Methane Tri-reforming over a Ni/β-SiC-based Catalyst: Optimizing the Feedstock Composition, International Journal of Hydrogen Energy, 38(11): 4524-4532 (2013).
[10] Chein R-Y., Wang C-Y., Yu C-T., Parametric Study on Catalytic Tri-reforming of Methane for Syngas Production, Energy, 118: 1-17 (2017).
[12] Arab Aboosadi Z., Jahanmiri A., Rahimpour M.R., Optimization of Tri-reformer Reactor to Produce Synthesis Gas for Methanol Production using Differential Evolution (DE) Method, Applied Energy, 88(8): 2691-2701 (2011).
[13] Khajeh S., Arab Aboosadi Z., Honarvar B., A Comparative Study Between Operability of Fluidized-bed and Fixed-bed Reactors to Produce Synthesis Gas through Tri-reforming, Journal of Natural Gas Science and Engineering, 19: 152-160 (2014).
[14] Farniaei M., Abbasi M., Rahnama H., Rahimpour M.R., Shariati A., Syngas Production in a Novel Methane Dry Reformer by Utilizing of Tri-reforming Process for Energy Supplying: Modeling and Simulation, Journal of Natural Gas Science and Engineering, 20: 132-146 (2014).
[15] Rahnama H., Farniaei M., Abbasi M., Rahimpour M.R, Modeling of Synthesis Gas and Hydrogen Production in a Thermally Coupling of Steam and Tri-reforming of Methane with Membranes, Journal of Industrial and Engineering Chemistry, 20(4): 1779-1792 (2014).
[16] Khajeh S., Arab Aboosadi Z., Honarvar B., Optimizing the Fluidized-bed Reactor for Synthesis Gas Production by Tri-reforming, Chemical Engineering Research and Design, 94: 407-416 (2015).
[17] Fekri Lari M., Farsi M., Rahimpour M.R., Modification of a Tri-reforming Reactor based on the Feeding Policy to Couple with Methanol and GTL Units, Chemical Engineering Research and Design, 144: 107-114 (2019).
[18] Farsi M., Fekri Lari M., Rahimpour M.R., Development of a Green Process for DME Production based on the Methane Tri-reforming, Journal of the Taiwan Institute of Chemical Engineers, 106: 9-19 (2020).
[19] Lu Y., Dixon A.G., Moser W.R., Ma Y.H., Analysis and Optimization of Cross-flow Reactors with Distributed Reactant Feed and Product Removal, Catalysis Today, 35(4): 443-450 (1997).
[20] Alipour-Dehkordi A., Khademi M.H., Use of a Micro-porous Membrane Multi-tubular Fixed-bed Reactor for Tri-reforming of Methane to Syngas: CO2, H2O or O2 Side-feeding, International Journal of Hydrogen Energy, 44(60): 32066-32079 (2019).
[21] Alipour-Dehkordi A., Khademi. M.H., O2, H2O or CO2 Side-feeding Policy in Methane Tri-reforming Reactor: The Role of Influencing Parameters, International Journal of Hydrogen Energy, 45: 15239-15253 (2020).
[23] Xu J., Froment G.F., Methane Steam Reforming, Methanation and Water-gas Shift: I. Intrinsic Kinetics, AIChE Journal, 35(1): 88-96 (1989).
[24] Trimm D.L., Lam C-W., The Combustion of Methane on Platinum—alumina Fibre Catalysts—I: Kinetics and Mechanism, Chemical Engineering Science, 35(1): 88-96 (1989).
[25] De Smet C., De Croon M., Berger R., Marin G., Schouten J., Design of Adiabatic Fixed-bed Reactors for the Partial Oxidation of Methane to Synthesis Gas. Application to Production of Methanol and Hydrogen-for-fuel-cells, Chemical Engineering Science, 56(16):4849-4861 (2001).
[26] Weigand B., "Analytical Methods for Heat Transfer and Fluid Flow Problems", Springer, Berlin, Heidelberg (2004).
[27] Holman J.P., "Heat Transfer", McGraw-Hill, United States of America (2010).
[29] Fogler H.S., "Elements of chemical reaction engineering", Prentice Hall, London (1999).
[30] Rodriguez M.L., Ardissone D.E., Heracleous E., Lemonidou A.A., López E., Pedernera M.N., Borio D.O., Oxidative Dehydrogenation of Ethane to Ethylene in a Membrane Reactor:
A Theoretical Study
, Catalyst Today, 157: 303-309 (2010).
[31] Uchytil P., Schramm O., Seidel-Morgenstern A., Influence of the Transport Direction on Gas Permeation in Two-layer Ceramic Membranes, Journal of Membrane Science, 170(2): 215-224 (2000).
[32] Babu B., Angira R., Optimal Design of an Auto-thermal Ammonia Synthesis Reactor, Computers & Chemical Engineering, 29(5): 1041-1045 (2005).
[33] Babu B., Angira R., Modified Differential Evolution (MDE) for Optimization of Non-linear Chemical Processes, Computers & Chemical Engineering, 30(6-7): 989-1002 (2006).
[34] Saad J.M., Williams P.T., Manipulating the H2/CO Ratio from Dry Reforming of Simulated Mixed Waste Plastics by the Addition of Steam, Fuel Processing Technology, 156: 331-338 (2017).
[35] Zhang Y., Zhang S., Benson T., A Conceptual Design by Integrating Dimethyl Ether (DME) Production with Tri-reforming Process for CO2 Emission Reduction, Fuel Processing Technology, 131: 7-13 (2015).
[36] Munro M., Evaluated Material Properties for a Sintered Alpha-alumina, Journal of the American Ceramic Society, 80(8): 1919-1928 (2005).
[37] Hussain A., Seidel-Morgenstern A., Tsotsas E., Heat and Mass Transfer in Tubular Ceramic Membranes for Membrane Reactors, International Journal of Heat and Mass Transfer, 49(13-14): 2239-2253 (2006).
[38] Darvishi A., Bakhtyari A., Rahimpour M.R., A Sensitivity Analysis and Multi-objective Optimization to Enhance Ethylene Production by Oxidative Dehydrogenation of Ethane in a Membrane-assisted Reactor, Chinese Journal of Chemical Engineering, 26: 1879-1895 (2018).
[39] Kang J.S., Kim D.H., Lee S.D., Hong S.I., Moon D.J., Nickel-Based Tri-reforming Catalyst for the Production of Synthesis Gas, Applied Catalysis A: General, 332(1): 153-158 (2007).
[40] Dahl P.J., Christensen T.S., Winter-Madsen S., King S.M., Proven Autothermal Reforming Technology for Modem Large-scale Methanol Plants, Nitrogen + Syngas International Conference & Exhibition, Haldor Topsoe Website, 1-12 (2014).